These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
315 related items for PubMed ID: 25461931
1. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Hocheng H, Su C, Jadhav UU. Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931 [Abstract] [Full Text] [Related]
2. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Wang J, Bai J, Xu J, Liang B. J Hazard Mater; 2009 Dec 30; 172(2-3):1100-5. PubMed ID: 19699031 [Abstract] [Full Text] [Related]
3. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Ko MS, Park HS, Kim KW, Lee JU. Environ Geochem Health; 2013 Dec 30; 35(6):727-33. PubMed ID: 23709230 [Abstract] [Full Text] [Related]
4. Vanadium removal from LD converter slag using bacteria and fungi. Mirazimi SM, Abbasalipour Z, Rashchi F. J Environ Manage; 2015 Apr 15; 153():144-51. PubMed ID: 25697901 [Abstract] [Full Text] [Related]
5. Bacterial leaching of critical metal values from Polish copper metallurgical slags using Acidithiobacillus thiooxidans. Mikoda B, Potysz A, Kmiecik E. J Environ Manage; 2019 Apr 15; 236():436-445. PubMed ID: 30769253 [Abstract] [Full Text] [Related]
6. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478. Sharma M, Bisht V, Singh B, Jain P, Mandal AK, Lal B, Sarma PM. Indian J Exp Biol; 2015 Jun 15; 53(6):388-94. PubMed ID: 26155679 [Abstract] [Full Text] [Related]
7. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D. Water Sci Technol; 2018 May 15; 2017(2):390-403. PubMed ID: 29851391 [Abstract] [Full Text] [Related]
8. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology. Srichandan H, Pathak A, Kim DJ, Lee SW. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 May 15; 49(14):1740-53. PubMed ID: 25320861 [Abstract] [Full Text] [Related]
9. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Naseri T, Bahaloo-Horeh N, Mousavi SM. J Environ Manage; 2019 Apr 01; 235():357-367. PubMed ID: 30708273 [Abstract] [Full Text] [Related]
10. Bioleaching of valuable and hazardous metals from dry discharged incineration slag. An approach for metal recycling and pollutant elimination. Auerbach R, Ratering S, Bokelmann K, Gellermann C, Brämer T, Baumann R, Schnell S. J Environ Manage; 2019 Feb 15; 232():428-437. PubMed ID: 30500707 [Abstract] [Full Text] [Related]
11. Microbial leaching of waste solder for recovery of metal. Hocheng H, Hong T, Jadhav U. Appl Biochem Biotechnol; 2014 May 15; 173(1):193-204. PubMed ID: 24634142 [Abstract] [Full Text] [Related]
12. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation. Zhou Q, Gao J, Li Y, Zhu S, He L, Nie W, Zhang R. Water Sci Technol; 2017 Sep 15; 76(5-6):1347-1359. PubMed ID: 28953461 [Abstract] [Full Text] [Related]
13. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Kumar RN, Nagendran R. Chemosphere; 2007 Jan 15; 66(9):1775-81. PubMed ID: 16979697 [Abstract] [Full Text] [Related]
14. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. Yang Y, Chen S, Li S, Chen M, Chen H, Liu B. J Biotechnol; 2014 Mar 10; 173():24-30. PubMed ID: 24445171 [Abstract] [Full Text] [Related]
15. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. Naresh Kumar R, Nagendran R. J Hazard Mater; 2009 Sep 30; 169(1-3):1119-26. PubMed ID: 19464109 [Abstract] [Full Text] [Related]
16. A novel step-wise indirect bioleaching using biogenic ferric agent for enhancement recovery of valuable metals from waste light emitting diode (WLED). Pourhossein F, Mousavi SM. J Hazard Mater; 2019 Oct 15; 378():120648. PubMed ID: 31203122 [Abstract] [Full Text] [Related]
17. The effects of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil. Liu HL, Chiu CW, Cheng YC. Biotechnol Bioeng; 2003 Sep 20; 83(6):638-45. PubMed ID: 12889028 [Abstract] [Full Text] [Related]
18. Column bioleaching of metals from refinery spent catalyst by Acidithiobacillus thiooxidans: Effect of operational modifications on metal extraction, metal precipitation, and bacterial attachment. Pathak A, Srichandan H, Kim DJ. J Environ Manage; 2019 Jul 15; 242():372-383. PubMed ID: 31059950 [Abstract] [Full Text] [Related]
19. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp. Nguyen VK, Ha MG, Shin S, Seo M, Jang J, Jo S, Kim D, Lee S, Jung Y, Kang P, Shin C, Ahn Y. J Environ Manage; 2018 Oct 01; 223():852-859. PubMed ID: 29986334 [Abstract] [Full Text] [Related]
20. Leaching of metals from end-of-life solar cells. Chakankar M, Su CH, Hocheng H. Environ Sci Pollut Res Int; 2019 Oct 01; 26(29):29524-29531. PubMed ID: 29637455 [Abstract] [Full Text] [Related] Page: [Next] [New Search]