These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 25464283
21. Photo-induced redox coupling of dissolved organic matter and iron in biochars and soil system: Enhanced mobility of arsenic. Kim HB, Kim JG, Choi JH, Kwon EE, Baek K. Sci Total Environ; 2019 Nov 01; 689():1037-1043. PubMed ID: 31466144 [Abstract] [Full Text] [Related]
22. Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils. Michálková Z, Komárek M, Veselská V, Číhalová S. Environ Sci Pollut Res Int; 2016 Jun 01; 23(11):10841-10854. PubMed ID: 26895725 [Abstract] [Full Text] [Related]
23. XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Cancès B, Juillot F, Morin G, Laperche V, Alvarez L, Proux O, Hazemann JL, Brown GE, Calas G. Environ Sci Technol; 2005 Dec 15; 39(24):9398-405. PubMed ID: 16475314 [Abstract] [Full Text] [Related]
24. Effect of biosolid incorporation on arsenic distribution in Mollisol soils in central Chile. Ascar L, Ahumada I, Richter P. Chemosphere; 2008 Jan 15; 70(7):1211-7. PubMed ID: 17889255 [Abstract] [Full Text] [Related]
26. Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Niazi NK, Singh B, Shah P. Environ Sci Technol; 2011 Sep 01; 45(17):7135-42. PubMed ID: 21797214 [Abstract] [Full Text] [Related]
28. Arsenic availability in rice from a mining area: is amorphous iron oxide-bound arsenic a source or sink? Liu C, Yu HY, Liu C, Li F, Xu X, Wang Q. Environ Pollut; 2015 Apr 01; 199():95-101. PubMed ID: 25638690 [Abstract] [Full Text] [Related]
30. Enhanced remediation of arsenic and chromium co-contaminated soil by eletrokinetic-permeable reactive barriers with different reagents. Xu Y, Li J, Xia W, Sun Y, Qian G, Zhang J. Environ Sci Pollut Res Int; 2019 Feb 01; 26(4):3392-3403. PubMed ID: 30511220 [Abstract] [Full Text] [Related]
31. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment. Cao M, Ye Y, Chen J, Lu X. Chemosphere; 2016 Feb 01; 144():1313-8. PubMed ID: 26476769 [Abstract] [Full Text] [Related]
32. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances. Tsang DC, Hartley NR. Environ Sci Pollut Res Int; 2014 Mar 01; 21(5):3987-95. PubMed ID: 24297462 [Abstract] [Full Text] [Related]
33. Remediation of As-contaminated soils using citrate extraction coupled with electrochemical removal. Yang X, Liu L, Wang Y, Qiu G. Sci Total Environ; 2022 Apr 15; 817():153042. PubMed ID: 35032531 [Abstract] [Full Text] [Related]
34. Arsenic strongly associates with ferrihydrite colloids formed in a soil effluent. Fritzsche A, Rennert T, Totsche KU. Environ Pollut; 2011 May 15; 159(5):1398-405. PubMed ID: 21310516 [Abstract] [Full Text] [Related]
35. Soil washing of arsenic from mixed contaminated abandoned mine soils and fate of arsenic after washing. Fazle Bari ASM, Lamb D, MacFarlane GR, Rahman MM. Chemosphere; 2022 Jun 15; 296():134053. PubMed ID: 35183586 [Abstract] [Full Text] [Related]
36. Simultaneous application of oxalic acid and dithionite for enhanced extraction of arsenic bound to amorphous and crystalline iron oxides. Lee ME, Jeon EK, Tsang DCW, Baek K. J Hazard Mater; 2018 Jul 15; 354():91-98. PubMed ID: 29729603 [Abstract] [Full Text] [Related]
37. Iron amendments to reduce bioaccessible arsenic. Cutler WG, El-Kadi A, Hue NV, Peard J, Scheckel K, Ray C. J Hazard Mater; 2014 Aug 30; 279():554-61. PubMed ID: 25113516 [Abstract] [Full Text] [Related]
38. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria. Zhang Z, Yin N, Du H, Cai X, Cui Y. Chemosphere; 2016 May 30; 151():108-15. PubMed ID: 26933901 [Abstract] [Full Text] [Related]
39. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang N, Xue XM, Juhasz AL, Chang ZZ, Li HB. Environ Pollut; 2017 Jan 30; 220(Pt A):514-522. PubMed ID: 27720546 [Abstract] [Full Text] [Related]
40. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E, Zagury GJ. Sci Total Environ; 2009 Apr 01; 407(8):2576-85. PubMed ID: 19211134 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]