These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 25470365

  • 21. Standard Practice for Bulk Sample Collection and Swab Sample Collection of Visible Powders Suspected of Being Biological Agents from Nonporous Surfaces: collaborative study.
    Locascio LE, Harper B, Robinson M.
    J AOAC Int; 2007; 90(1):299-333. PubMed ID: 17373464
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Evaluation of personal inhalable aerosol samplers with different filters for use during anthrax responses.
    Grinshpun SA, Weber AM, Yermakov M, Indugula R, Elmashae Y, Reponen T, Rose L.
    J Occup Environ Hyg; 2017 Aug; 14(8):585-595. PubMed ID: 28506101
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant.
    Clark Burton N, Adhikari A, Grinshpun SA, Hornung R, Reponen T.
    J Environ Monit; 2005 May; 7(5):475-80. PubMed ID: 15877169
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Evaluation of vacuum filter sock surface sample collection method for Bacillus spores from porous and non-porous surfaces.
    Brown GS, Betty RG, Brockmann JE, Lucero DA, Souza CA, Walsh KS, Boucher RM, Tezak MS, Wilson MC.
    J Environ Monit; 2007 Jul; 9(7):666-71. PubMed ID: 17607386
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Evaluation of two surface sampling methods for the detection of Bacillus atrophaeus aerosolized in a test chamber.
    Buttner MP, Cruz P, Detrick E, Gunter J, Medley S.
    J Microbiol Methods; 2022 Jul; 198():106507. PubMed ID: 35649458
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings.
    Centers for Disease Control and Prevention (CDC).
    MMWR Morb Mortal Wkly Rep; 2001 Dec 07; 50(48):1087. PubMed ID: 11770505
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Bacillus anthracis contamination and inhalational anthrax in a mail processing and distribution center.
    Sanderson WT, Stoddard RR, Echt AS, Piacitelli CA, Kim D, Horan J, Davies MM, McCleery RE, Muller P, Schnorr TM, Ward EM, Hales TR.
    J Appl Microbiol; 2004 Dec 07; 96(5):1048-56. PubMed ID: 15078521
    [Abstract] [Full Text] [Related]

  • 38. Method modification (2004.08) to field testing of visible powders on a variety of nonporous environmental surfaces: field study.
    Harper B, Robinson M.
    J AOAC Int; 2006 Dec 07; 89(6):1622-8. PubMed ID: 17225611
    [Abstract] [Full Text] [Related]

  • 39. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples.
    Létant SE, Kane SR, Murphy GA, Alfaro TM, Hodges LR, Rose LJ, Raber E.
    J Microbiol Methods; 2010 May 07; 81(2):200-2. PubMed ID: 20193716
    [Abstract] [Full Text] [Related]

  • 40. Enhanced detection of surface-associated bacteria in indoor environments by quantitative PCR.
    Buttner MP, Cruz-Perez P, Stetzenbach LD.
    Appl Environ Microbiol; 2001 Jun 07; 67(6):2564-70. PubMed ID: 11375164
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.