These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 25475893

  • 1. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae.
    Xie W, Ye L, Lv X, Xu H, Yu H.
    Metab Eng; 2015 Mar; 28():8-18. PubMed ID: 25475893
    [Abstract] [Full Text] [Related]

  • 2. Significantly Enhanced Production of Patchoulol in Metabolically Engineered Saccharomyces cerevisiae.
    Ma B, Liu M, Li ZH, Tao X, Wei DZ, Wang FQ.
    J Agric Food Chem; 2019 Aug 07; 67(31):8590-8598. PubMed ID: 31287301
    [Abstract] [Full Text] [Related]

  • 3. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE.
    Metab Eng; 2017 Jan 07; 39():209-219. PubMed ID: 27939849
    [Abstract] [Full Text] [Related]

  • 4. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae.
    Su B, Song D, Yang F, Zhu H.
    J Ind Microbiol Biotechnol; 2020 May 07; 47(4-5):383-393. PubMed ID: 32236768
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA, Maury J, Schalk M, Clark A, Nielsen J.
    Biotechnol Bioeng; 2010 May 01; 106(1):86-96. PubMed ID: 20091767
    [Abstract] [Full Text] [Related]

  • 7. Mitochondrial acetyl-CoA utilization pathway for terpenoid productions.
    Yuan J, Ching CB.
    Metab Eng; 2016 Nov 01; 38():303-309. PubMed ID: 27471067
    [Abstract] [Full Text] [Related]

  • 8. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y.
    Microb Cell Fact; 2016 Jun 21; 15(1):113. PubMed ID: 27329233
    [Abstract] [Full Text] [Related]

  • 9. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum.
    Frohwitter J, Heider SA, Peters-Wendisch P, Beekwilder J, Wendisch VF.
    J Biotechnol; 2014 Dec 10; 191():205-13. PubMed ID: 24910970
    [Abstract] [Full Text] [Related]

  • 10. Metabolic engineering of Saccharomyces cerevisiae for enhanced taxadiene production.
    Karaca H, Kaya M, Kapkac HA, Levent S, Ozkay Y, Ozan SD, Nielsen J, Krivoruchko A.
    Microb Cell Fact; 2024 Sep 06; 23(1):241. PubMed ID: 39242505
    [Abstract] [Full Text] [Related]

  • 11. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.
    Xie W, Lv X, Ye L, Zhou P, Yu H.
    Metab Eng; 2015 Jul 06; 30():69-78. PubMed ID: 25959020
    [Abstract] [Full Text] [Related]

  • 12. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae.
    Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J.
    Microb Cell Fact; 2012 Aug 31; 11():117. PubMed ID: 22938570
    [Abstract] [Full Text] [Related]

  • 13. Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory.
    Zhang C, Li M, Zhao GR, Lu W.
    Microb Cell Fact; 2019 Sep 23; 18(1):160. PubMed ID: 31547812
    [Abstract] [Full Text] [Related]

  • 14. Affibody Scaffolds Improve Sesquiterpene Production in Saccharomyces cerevisiae.
    Tippmann S, Anfelt J, David F, Rand JM, Siewers V, Uhlén M, Nielsen J, Hudson EP.
    ACS Synth Biol; 2017 Jan 20; 6(1):19-28. PubMed ID: 27560952
    [Abstract] [Full Text] [Related]

  • 15. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM, Kirby J, Chan R, Keasling JD.
    Biotechnol Bioeng; 2008 Jun 01; 100(2):371-8. PubMed ID: 18175359
    [Abstract] [Full Text] [Related]

  • 16. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene.
    Hu Y, Zhou YJ, Bao J, Huang L, Nielsen J, Krivoruchko A.
    J Ind Microbiol Biotechnol; 2017 Jul 01; 44(7):1065-1072. PubMed ID: 28547322
    [Abstract] [Full Text] [Related]

  • 17. Increasing the intracellular isoprenoid pool in Saccharomyces cerevisiae by structural fine-tuning of a bifunctional farnesyl diphosphate synthase.
    Rubat S, Varas I, Sepúlveda R, Almonacid D, González-Nilo F, Agosin E.
    FEMS Yeast Res; 2017 Jun 01; 17(4):. PubMed ID: 28854674
    [Abstract] [Full Text] [Related]

  • 18. Adaptive Evolution and Metabolic Engineering Boost Lycopene Production in Saccharomyces cerevisiae via Enhanced Precursors Supply and Utilization.
    Zhou K, Yu C, Liang N, Xiao W, Wang Y, Yao M, Yuan Y.
    J Agric Food Chem; 2023 Mar 01; 71(8):3821-3831. PubMed ID: 36802623
    [Abstract] [Full Text] [Related]

  • 19. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae.
    Dai Z, Liu Y, Huang L, Zhang X.
    Biotechnol Bioeng; 2012 Nov 01; 109(11):2845-53. PubMed ID: 22566191
    [Abstract] [Full Text] [Related]

  • 20. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae.
    Chai F, Wang Y, Mei X, Yao M, Chen Y, Liu H, Xiao W, Yuan Y.
    Microb Cell Fact; 2017 Mar 29; 16(1):54. PubMed ID: 28356104
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.