These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 25478834

  • 1. High-resolution structures of cholesterol oxidase in the reduced state provide insights into redox stabilization.
    Golden E, Karton A, Vrielink A.
    Acta Crystallogr D Biol Crystallogr; 2014 Dec 01; 70(Pt 12):3155-66. PubMed ID: 25478834
    [Abstract] [Full Text] [Related]

  • 2. Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity.
    Lario PI, Sampson N, Vrielink A.
    J Mol Biol; 2003 Mar 07; 326(5):1635-50. PubMed ID: 12595270
    [Abstract] [Full Text] [Related]

  • 3. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
    Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A.
    Biochem J; 2006 Nov 15; 400(1):13-22. PubMed ID: 16856877
    [Abstract] [Full Text] [Related]

  • 4. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases.
    Li J, Vrielink A, Brick P, Blow DM.
    Biochemistry; 1993 Nov 02; 32(43):11507-15. PubMed ID: 8218217
    [Abstract] [Full Text] [Related]

  • 5. The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase.
    Yin Y, Sampson NS, Vrielink A, Lario PI.
    Biochemistry; 2001 Nov 20; 40(46):13779-87. PubMed ID: 11705367
    [Abstract] [Full Text] [Related]

  • 6. Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase.
    Lyubimov AY, Heard K, Tang H, Sampson NS, Vrielink A.
    Protein Sci; 2007 Dec 20; 16(12):2647-56. PubMed ID: 18029419
    [Abstract] [Full Text] [Related]

  • 7. Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants.
    Yue QK, Kass IJ, Sampson NS, Vrielink A.
    Biochemistry; 1999 Apr 06; 38(14):4277-86. PubMed ID: 10194345
    [Abstract] [Full Text] [Related]

  • 8. Cholesterol oxidase: ultrahigh-resolution crystal structure and multipolar atom model-based analysis.
    Zarychta B, Lyubimov A, Ahmed M, Munshi P, Guillot B, Vrielink A, Jelsch C.
    Acta Crystallogr D Biol Crystallogr; 2015 Apr 06; 71(Pt 4):954-68. PubMed ID: 25849405
    [Abstract] [Full Text] [Related]

  • 9. Atomic resolution crystallography reveals how changes in pH shape the protein microenvironment.
    Lyubimov AY, Lario PI, Moustafa I, Vrielink A.
    Nat Chem Biol; 2006 May 06; 2(5):259-64. PubMed ID: 16604066
    [Abstract] [Full Text] [Related]

  • 10. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase.
    Sampson NS.
    Antioxid Redox Signal; 2001 Oct 06; 3(5):839-46. PubMed ID: 11761331
    [Abstract] [Full Text] [Related]

  • 11. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase.
    Bhattacharyya S, Stankovich MT, Truhlar DG, Gao J.
    J Phys Chem A; 2007 Jul 05; 111(26):5729-42. PubMed ID: 17567113
    [Abstract] [Full Text] [Related]

  • 12. An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase.
    Golden E, Yu LJ, Meilleur F, Blakeley MP, Duff AP, Karton A, Vrielink A.
    Sci Rep; 2017 Jan 18; 7():40517. PubMed ID: 28098177
    [Abstract] [Full Text] [Related]

  • 13. Cholesterol oxidase: structure and function.
    Vrielink A.
    Subcell Biochem; 2010 Jan 18; 51():137-58. PubMed ID: 20213543
    [Abstract] [Full Text] [Related]

  • 14. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M, Tamada T, Takeda K, Matsumoto F, Ohno H, Kosugi M, Takaba K, Shoyama Y, Kimura S, Kuroki R, Miki K.
    J Mol Biol; 2013 Nov 15; 425(22):4295-306. PubMed ID: 23831226
    [Abstract] [Full Text] [Related]

  • 15. Reaction mechanism of the iron-sulfur flavoenzyme adenosine-5'-phosphosulfate reductase based on the structural characterization of different enzymatic states.
    Schiffer A, Fritz G, Kroneck PM, Ermler U.
    Biochemistry; 2006 Mar 07; 45(9):2960-7. PubMed ID: 16503650
    [Abstract] [Full Text] [Related]

  • 16. Crystal structure of cholesterol oxidase from Brevibacterium sterolicum refined at 1.8 A resolution.
    Vrielink A, Lloyd LF, Blow DM.
    J Mol Biol; 1991 Jun 05; 219(3):533-54. PubMed ID: 2051487
    [Abstract] [Full Text] [Related]

  • 17. Dissecting the structural determinants of the stability of cholesterol oxidase containing covalently bound flavin.
    Caldinelli L, Iametti S, Barbiroli A, Bonomi F, Fessas D, Molla G, Pilone MS, Pollegioni L.
    J Biol Chem; 2005 Jun 17; 280(24):22572-81. PubMed ID: 15817448
    [Abstract] [Full Text] [Related]

  • 18. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase.
    Lyubimov AY, Chen L, Sampson NS, Vrielink A.
    Acta Crystallogr D Biol Crystallogr; 2009 Nov 17; 65(Pt 11):1222-31. PubMed ID: 19923719
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.