These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


205 related items for PubMed ID: 25490027

  • 1. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand.
    Soekadar SR, Witkowski M, Vitiello N, Birbaumer N.
    Biomed Tech (Berl); 2015 Jun; 60(3):199-205. PubMed ID: 25490027
    [Abstract] [Full Text] [Related]

  • 2. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG).
    Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar SR.
    J Neuroeng Rehabil; 2014 Dec 16; 11():165. PubMed ID: 25510922
    [Abstract] [Full Text] [Related]

  • 3. EEG-EOG based Virtual Keyboard: Toward Hybrid Brain Computer Interface.
    Hosni SM, Shedeed HA, Mabrouk MS, Tolba MF.
    Neuroinformatics; 2019 Jul 16; 17(3):323-341. PubMed ID: 30368637
    [Abstract] [Full Text] [Related]

  • 4. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living.
    Crea S, Nann M, Trigili E, Cordella F, Baldoni A, Badesa FJ, Catalán JM, Zollo L, Vitiello N, Aracil NG, Soekadar SR.
    Sci Rep; 2018 Jul 17; 8(1):10823. PubMed ID: 30018334
    [Abstract] [Full Text] [Related]

  • 5. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction.
    Nann M, Peekhaus N, Angerhöfer C, Soekadar SR.
    Front Hum Neurosci; 2020 Jul 17; 14():580105. PubMed ID: 33362490
    [Abstract] [Full Text] [Related]

  • 6. Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton.
    Badesa FJ, Diez JA, Catalan JM, Trigili E, Cordella F, Nann M, Crea S, Soekadar SR, Zollo L, Vitiello N, Garcia-Aracil N.
    Sensors (Basel); 2019 Nov 12; 19(22):. PubMed ID: 31726745
    [Abstract] [Full Text] [Related]

  • 7. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia.
    Soekadar SR, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza MC, Cohen LG, Birbaumer N, Vitiello N.
    Sci Robot; 2016 Dec 06; 1(1):. PubMed ID: 33157855
    [Abstract] [Full Text] [Related]

  • 8. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.
    Ma J, Zhang Y, Cichocki A, Matsuno F.
    IEEE Trans Biomed Eng; 2015 Mar 06; 62(3):876-89. PubMed ID: 25398172
    [Abstract] [Full Text] [Related]

  • 9. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements.
    Kawase T, Sakurada T, Koike Y, Kansaku K.
    J Neural Eng; 2017 Feb 06; 14(1):016015. PubMed ID: 28068293
    [Abstract] [Full Text] [Related]

  • 10. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals.
    Jiang J, Zhou Z, Yin E, Yu Y, Hu D.
    Biomed Mater Eng; 2014 Feb 06; 24(6):2919-25. PubMed ID: 25226998
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer.
    He S, Zhou Y, Yu T, Zhang R, Huang Q, Chuai L, Mustafa MU, Gu Z, Yu ZL, Tan H, Li Y.
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb 06; 28(2):519-530. PubMed ID: 31870987
    [Abstract] [Full Text] [Related]

  • 13. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH, Williamson J, Won DO, Fazli S, Lee SW.
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul 06; 26(7):1443-1459. PubMed ID: 29985154
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Hybrid EEG-EOG brain-computer interface system for practical machine control.
    Punsawad Y, Wongsawat Y, Parnichkun M.
    Annu Int Conf IEEE Eng Med Biol Soc; 2010 Jul 06; 2010():1360-3. PubMed ID: 21096331
    [Abstract] [Full Text] [Related]

  • 16. Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
    Burton TM, Vaidyanathan R, Burgess SC, Turton AJ, Melhuish C.
    IEEE Int Conf Rehabil Robot; 2011 Jul 06; 2011():5975344. PubMed ID: 22275549
    [Abstract] [Full Text] [Related]

  • 17. Assistance Robotics and Biosensors.
    Torres F, Puente ST, Úbeda A.
    Sensors (Basel); 2018 Oct 17; 18(10):. PubMed ID: 30336595
    [Abstract] [Full Text] [Related]

  • 18. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs).
    Catalán JM, Trigili E, Nann M, Blanco-Ivorra A, Lauretti C, Cordella F, Ivorra E, Armstrong E, Crea S, Alcañiz M, Zollo L, Soekadar SR, Vitiello N, García-Aracil N.
    J Neuroeng Rehabil; 2023 May 06; 20(1):61. PubMed ID: 37149621
    [Abstract] [Full Text] [Related]

  • 19. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N, Guan C, Vinod AP.
    J Neural Eng; 2015 Dec 06; 12(6):066019. PubMed ID: 26501230
    [Abstract] [Full Text] [Related]

  • 20. The Berlin Bimanual Test for Tetraplegia (BeBiTT): development, psychometric properties, and sensitivity to change in assistive hand exoskeleton application.
    Angerhöfer C, Vermehren M, Colucci A, Nann M, Koßmehl P, Niedeggen A, Kim WS, Chang WK, Paik NJ, Hömberg V, Soekadar SR.
    J Neuroeng Rehabil; 2023 Jan 27; 20(1):17. PubMed ID: 36707885
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.