These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


354 related items for PubMed ID: 25492201

  • 21. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering.
    Luo LJ, Lai JY, Chou SF, Hsueh YJ, Ma DH.
    Acta Biomater; 2018 Jan; 65():123-136. PubMed ID: 29128534
    [Abstract] [Full Text] [Related]

  • 22. Supermacroprous chitosan-agarose-gelatin cryogels: in vitro characterization and in vivo assessment for cartilage tissue engineering.
    Bhat S, Tripathi A, Kumar A.
    J R Soc Interface; 2011 Apr 06; 8(57):540-54. PubMed ID: 20943683
    [Abstract] [Full Text] [Related]

  • 23. Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering.
    Kuo CY, Chen CH, Hsiao CY, Chen JP.
    Carbohydr Polym; 2015 Mar 06; 117():722-730. PubMed ID: 25498693
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y, Sangaj N, Varghese S.
    Tissue Eng Part A; 2010 Oct 06; 16(10):3033-41. PubMed ID: 20486791
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Formation and characterisation of a modifiable soft macro-porous hyaluronic acid cryogel platform.
    Henderson TM, Ladewig K, Haylock DN, McLean KM, O'Connor AJ.
    J Biomater Sci Polym Ed; 2015 Oct 06; 26(13):881-97. PubMed ID: 26123677
    [Abstract] [Full Text] [Related]

  • 30. Three-dimensional cryogels for biomedical applications.
    Razavi M, Qiao Y, Thakor AS.
    J Biomed Mater Res A; 2019 Dec 06; 107(12):2736-2755. PubMed ID: 31408265
    [Abstract] [Full Text] [Related]

  • 31. Shape memory injectable cryogel based on carboxymethyl chitosan/gelatin for minimally invasive tissue engineering: In vitro and in vivo assays.
    Olov N, Mirzadeh H, Moradi R, Rajabi S, Bagheri-Khoulenjani S.
    J Biomed Mater Res B Appl Biomater; 2022 Nov 06; 110(11):2438-2451. PubMed ID: 35661396
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory.
    Fu CY, Chuang WT, Hsu SH.
    ACS Appl Mater Interfaces; 2021 Mar 03; 13(8):9702-9713. PubMed ID: 33600161
    [Abstract] [Full Text] [Related]

  • 39. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering.
    Zhang K, Yang Z, Seitz MP, Jain E.
    ACS Appl Bio Mater; 2024 Sep 16; 7(9):5925-5938. PubMed ID: 39135543
    [Abstract] [Full Text] [Related]

  • 40. Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering.
    Kundu B, Kundu SC.
    Biomed Mater; 2013 Oct 16; 8(5):055003. PubMed ID: 24002731
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.