These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 25494392

  • 1. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living.
    Montoye AH, Mudd LM, Biswas S, Pfeiffer KA.
    Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392
    [Abstract] [Full Text] [Related]

  • 2. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.
    Montoye AHK, Begum M, Henning Z, Pfeiffer KA.
    Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205
    [Abstract] [Full Text] [Related]

  • 3. Wrist-independent energy expenditure prediction models from raw accelerometer data.
    Montoye AH, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA.
    Physiol Meas; 2016 Oct; 37(10):1770-1784. PubMed ID: 27653642
    [Abstract] [Full Text] [Related]

  • 4. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH, Dong B, Biswas S, Pfeiffer KA.
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [Abstract] [Full Text] [Related]

  • 5. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach.
    Mackintosh KA, Montoye AH, Pfeiffer KA, McNarry MA.
    Physiol Meas; 2016 Oct; 37(10):1728-1740. PubMed ID: 27653339
    [Abstract] [Full Text] [Related]

  • 6. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
    Ellis K, Kerr J, Godbole S, Lanckriet G, Wing D, Marshall S.
    Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M, Penders J, Vullers R, Amft O.
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [Abstract] [Full Text] [Related]

  • 11. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study.
    Zhu Z, Chen P, Zhuang J.
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567
    [Abstract] [Full Text] [Related]

  • 12. An artificial neural network model of energy expenditure using nonintegrated acceleration signals.
    Rothney MP, Neumann M, Béziat A, Chen KY.
    J Appl Physiol (1985); 2007 Oct; 103(4):1419-27. PubMed ID: 17641221
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.
    Imboden MT, Nelson MB, Kaminsky LA, Montoye AH.
    Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930
    [Abstract] [Full Text] [Related]

  • 15. Validation and Comparison of Accelerometers Worn on the Hip, Thigh, and Wrists for Measuring Physical Activity and Sedentary Behavior.
    Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA.
    AIMS Public Health; 2016 Jul; 3(2):298-312. PubMed ID: 29546164
    [Abstract] [Full Text] [Related]

  • 16. Artificial neural networks to predict activity type and energy expenditure in youth.
    Trost SG, Wong WK, Pfeiffer KA, Zheng Y.
    Med Sci Sports Exerc; 2012 Sep; 44(9):1801-9. PubMed ID: 22525766
    [Abstract] [Full Text] [Related]

  • 17. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG, Way R, Okely AD.
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [Abstract] [Full Text] [Related]

  • 18. Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
    Choi L, Chen KY, Acra SA, Buchowski MS.
    J Appl Physiol (1985); 2010 Feb; 108(2):314-27. PubMed ID: 19959770
    [Abstract] [Full Text] [Related]

  • 19. Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Bouarfa L, Atallah L, Kwasnicki RM, Pettitt C, Frost G, Yang GZ.
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707
    [Abstract] [Full Text] [Related]

  • 20. Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification.
    Diniz-Sousa F, Veras L, Ribeiro JC, Boppre G, Devezas V, Santos-Sousa H, Preto J, Machado L, Vilas-Boas JP, Oliveira J, Fonseca H.
    Gait Posture; 2020 Feb; 76():104-109. PubMed ID: 31756665
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.