These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
259 related items for PubMed ID: 25494493
1. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders. Yang Y, Wang G, Zhao W, Tian Q, Huang L, Pan D. ACS Appl Mater Interfaces; 2015 Jan 14; 7(1):460-4. PubMed ID: 25494493 [Abstract] [Full Text] [Related]
2. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency. Li J, Wang H, Wu L, Chen C, Zhou Z, Liu F, Sun Y, Han J, Zhang Y. ACS Appl Mater Interfaces; 2016 Apr 27; 8(16):10283-92. PubMed ID: 27058738 [Abstract] [Full Text] [Related]
3. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure. Yao L, Ao J, Jeng MJ, Bi J, Gao S, He Q, Zhou Z, Sun G, Sun Y, Chang LB, Chen JW. Nanoscale Res Lett; 2014 Apr 27; 9(1):678. PubMed ID: 25593559 [Abstract] [Full Text] [Related]
4. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition. Jeon JO, Lee KD, Seul Oh L, Seo SW, Lee DK, Kim H, Jeong JH, Ko MJ, Kim B, Son HJ, Kim JY. ChemSusChem; 2014 Apr 27; 7(4):1073-7. PubMed ID: 24692285 [Abstract] [Full Text] [Related]
5. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells. Buffière M, Brammertz G, Sahayaraj S, Batuk M, Khelifi S, Mangin D, El Mel AA, Arzel L, Hadermann J, Meuris M, Poortmans J. ACS Appl Mater Interfaces; 2015 Jul 15; 7(27):14690-8. PubMed ID: 26039042 [Abstract] [Full Text] [Related]
6. Cu2ZnSnSe4 Thin Film Solar Cell with Depth Gradient Composition Prepared by Selenization of Sputtered Novel Precursors. Lai FI, Yang JF, Chen WC, Kuo SY. ACS Appl Mater Interfaces; 2017 Nov 22; 9(46):40224-40234. PubMed ID: 29072439 [Abstract] [Full Text] [Related]
7. Solution-Processed Cu2ZnSn(S,Se) 4 Thin-Film Solar Cells Using Elemental Cu, Zn, Sn, S, and Se Powders as Source. Guo J, Pei Y, Zhou Z, Zhou W, Kou D, Wu S. Nanoscale Res Lett; 2015 Dec 22; 10(1):1045. PubMed ID: 26293494 [Abstract] [Full Text] [Related]
8. Influence of the Reaction Pathway on the Defect Formation in a Cu2ZnSnSe4 Thin Film. Yoo H, Jang JS, Shin SW, Lee J, Kim J, Kim DM, Lee IJ, Lee BH, Park J, Kim JH. ACS Appl Mater Interfaces; 2021 Mar 24; 13(11):13425-13433. PubMed ID: 33706505 [Abstract] [Full Text] [Related]
9. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer. Zhang Z, Yao L, Zhang Y, Ao J, Bi J, Gao S, Gao Q, Jeng MJ, Sun G, Zhou Z, He Q, Sun Y. Adv Sci (Weinh); 2018 Feb 24; 5(2):1700645. PubMed ID: 29610727 [Abstract] [Full Text] [Related]
10. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor. Yao L, Ao J, Jeng MJ, Bi J, Gao S, Sun G, He Q, Zhou Z, Sun Y, Chang LB. Materials (Basel); 2016 Mar 29; 9(4):. PubMed ID: 28773366 [Abstract] [Full Text] [Related]
11. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors. Mainz R, Walker BC, Schmidt SS, Zander O, Weber A, Rodriguez-Alvarez H, Just J, Klaus M, Agrawal R, Unold T. Phys Chem Chem Phys; 2013 Nov 07; 15(41):18281-9. PubMed ID: 24068197 [Abstract] [Full Text] [Related]
12. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Just J, Sutter-Fella CM, Lützenkirchen-Hecht D, Frahm R, Schorr S, Unold T. Phys Chem Chem Phys; 2016 Jun 21; 18(23):15988-94. PubMed ID: 27240735 [Abstract] [Full Text] [Related]
13. CuIn(S,Se)(2) thin films prepared from a novel thioacetic acid-based solution and their photovoltaic application. Xie Y, Liu Y, Wang Y, Zhu X, Li A, Zhang L, Qin M, Lü X, Huang F. Phys Chem Chem Phys; 2014 Apr 28; 16(16):7548-54. PubMed ID: 24632726 [Abstract] [Full Text] [Related]
14. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires. Li ZQ, Shi JH, Liu QQ, Chen YW, Sun Z, Yang Z, Huang SM. Nanotechnology; 2011 Jul 01; 22(26):265615. PubMed ID: 21586809 [Abstract] [Full Text] [Related]
15. Tailoring Li assisted CZTSe film growth under controllable selenium partial pressure and solar cells. Liu Y, Zhang H, Meng R, Dong J, Xu X, Zhang J, Zhang Y. J Chem Phys; 2024 Sep 28; 161(12):. PubMed ID: 39324533 [Abstract] [Full Text] [Related]
16. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells. Steirer KX, Garris RL, Li JV, Dzara MJ, Ndione PF, Ramanathan K, Repins I, Teeter G, Perkins CL. Phys Chem Chem Phys; 2015 Jun 21; 17(23):15355-64. PubMed ID: 26000570 [Abstract] [Full Text] [Related]
17. Fabrication of a High-Quality Cu2ZnSn(S,Se)4 Absorber Layer via an Aqueous Solution Process and Application in Solar Cells. Zhao W, Yu F, Liu SF. ACS Appl Mater Interfaces; 2019 Jan 09; 11(1):634-639. PubMed ID: 30560655 [Abstract] [Full Text] [Related]
18. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications. Cho JW, Ismail A, Park SJ, Kim W, Yoon S, Min BK. ACS Appl Mater Interfaces; 2013 May 22; 5(10):4162-5. PubMed ID: 23611655 [Abstract] [Full Text] [Related]
19. Ecofriendly and Nonvacuum Electrostatic Spray-Assisted Vapor Deposition of Cu(In,Ga)(S,Se)2 Thin Film Solar Cells. Hossain MA, Wang M, Choy KL. ACS Appl Mater Interfaces; 2015 Oct 14; 7(40):22497-503. PubMed ID: 26390182 [Abstract] [Full Text] [Related]
20. In Situ Electrochemical Treatment Evoked Superior Grain Growth for Green Electrodeposition-Processed Flexible CZTSe Solar Cells. Liu J, Shen Q, Liu Z, Gao X, Zhang Z, Liu X, Cheng K, Du Z. ACS Appl Mater Interfaces; 2021 Jul 14; 13(27):31852-31860. PubMed ID: 34197079 [Abstract] [Full Text] [Related] Page: [Next] [New Search]