These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


703 related items for PubMed ID: 25499503

  • 21. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.
    Lu H, Kong X, Huang H, Zhou Y, Chen Y.
    J Environ Sci (China); 2015 Jun 01; 32():102-7. PubMed ID: 26040736
    [Abstract] [Full Text] [Related]

  • 22. Catalytic Oxidation of NO over MnOx-CeO₂ and MnOx-TiO₂ Catalysts.
    Zeng X, Huo X, Zhu T, Hong X, Sun Y.
    Molecules; 2016 Nov 14; 21(11):. PubMed ID: 27854237
    [Abstract] [Full Text] [Related]

  • 23. Enhanced the synergistic degradation effect between active hydroxyl and reactive oxygen species for indoor formaldehyde based on platinum atoms modified MnOOH/MnO2 catalyst.
    Yu Zheng J, Ling Zhou K, Kang Zhao W, Wang Y, He J, Wang X, Wang H, Yan H, Bao Han C.
    J Colloid Interface Sci; 2022 Dec 15; 628(Pt B):359-370. PubMed ID: 35998461
    [Abstract] [Full Text] [Related]

  • 24. Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions.
    Einaga H, Ogata A.
    J Hazard Mater; 2009 May 30; 164(2-3):1236-41. PubMed ID: 18976861
    [Abstract] [Full Text] [Related]

  • 25. Removal of Cl adsorbed on Mn-Ce-La solid solution catalysts during CVOC combustion.
    Wang X, Ran L, Dai Y, Lu Y, Dai Q.
    J Colloid Interface Sci; 2014 Jul 15; 426():324-32. PubMed ID: 24863800
    [Abstract] [Full Text] [Related]

  • 26. Chlorobenzene oxidation using ozone over iron oxide and manganese oxide catalysts.
    Wang HC, Liang HS, Chang MB.
    J Hazard Mater; 2011 Feb 28; 186(2-3):1781-7. PubMed ID: 21227575
    [Abstract] [Full Text] [Related]

  • 27. Catalytic oxidation of toluene in contaminant emission control systems using Mn-Ce/gamma-Al2O3.
    Kim HJ, Choi SW, Inyang HI.
    Environ Technol; 2008 May 28; 29(5):559-69. PubMed ID: 18661740
    [Abstract] [Full Text] [Related]

  • 28. Indoor formaldehyde removal by thermal catalyst: kinetic characteristics, key parameters, and temperature influence.
    Xu Q, Zhang Y, Mo J, Li X.
    Environ Sci Technol; 2011 Jul 01; 45(13):5754-60. PubMed ID: 21667968
    [Abstract] [Full Text] [Related]

  • 29. Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds.
    Faria PC, Monteiro DC, Orfão JJ, Pereira MF.
    Chemosphere; 2009 Feb 01; 74(6):818-24. PubMed ID: 19027138
    [Abstract] [Full Text] [Related]

  • 30. Controllable synthesis of nearly monodisperse spherical aggregates of CeO2 nanocrystals and their catalytic activity for HCHO oxidation.
    Wang Q, Jia W, Liu B, Zhao W, Li C, Zhang J, Xu G.
    Chem Asian J; 2012 Oct 01; 7(10):2258-67. PubMed ID: 22764014
    [Abstract] [Full Text] [Related]

  • 31. Ozone assisted oxidation of gaseous PCDD/Fs over CNTs-containing composite catalysts at low temperature.
    Wang Q, Tang M, Peng Y, Du C, Lu S.
    Chemosphere; 2018 May 01; 199():502-509. PubMed ID: 29455121
    [Abstract] [Full Text] [Related]

  • 32. Catalytic ozonation of oxalate with a cerium supported palladium oxide: an efficient degradation not relying on hydroxyl radical oxidation.
    Zhang T, Li W, Croué JP.
    Environ Sci Technol; 2011 Nov 01; 45(21):9339-46. PubMed ID: 21970593
    [Abstract] [Full Text] [Related]

  • 33. Mn-vacancy birnessite for photo-assisted elimination of formaldehyde at ambient condition.
    Li G, Mang C, Luo J, Rao M, Peng Z, Jiang T.
    J Colloid Interface Sci; 2022 Jul 15; 618():229-240. PubMed ID: 35339959
    [Abstract] [Full Text] [Related]

  • 34. Catalytic decomposition performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3 catalyst modified by a cost-effective chemical grafting method.
    Chen L, Ondarts M, Outin J, Gonthier Y, Gonze E.
    J Environ Sci (China); 2018 Dec 15; 74():58-70. PubMed ID: 30340675
    [Abstract] [Full Text] [Related]

  • 35. Synergistic effect of transition metal oxides and ozone on PCDD/F destruction.
    Wang HC, Chang SH, Hung PC, Hwang JF, Chang MB.
    J Hazard Mater; 2009 May 30; 164(2-3):1452-9. PubMed ID: 18996645
    [Abstract] [Full Text] [Related]

  • 36. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.
    Choi SW, Choi SK, Bae HK.
    J Air Waste Manag Assoc; 2015 Apr 30; 65(4):485-91. PubMed ID: 25947218
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. DRIFT study on cerium-tungsten/titania catalyst for selective catalytic reduction of NOx with NH3.
    Chen L, Li J, Ge M.
    Environ Sci Technol; 2010 Dec 15; 44(24):9590-6. PubMed ID: 21087047
    [Abstract] [Full Text] [Related]

  • 39. Highly selective catalytic reduction of NOx by MnOx-CeO2-Al2O3 catalysts prepared by self-propagating high-temperature synthesis.
    Wang C, Yu F, Zhu M, Tang C, Zhang K, Zhao D, Dong L, Dai B.
    J Environ Sci (China); 2019 Jan 15; 75():124-135. PubMed ID: 30473277
    [Abstract] [Full Text] [Related]

  • 40. High-surface area mesoporous Pt/TiO₂ hollow chains for efficient formaldehyde decomposition at ambient temperature.
    Qi L, Cheng B, Yu J, Ho W.
    J Hazard Mater; 2016 Jan 15; 301():522-30. PubMed ID: 26414928
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 36.