These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
412 related items for PubMed ID: 25505955
21. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Lossius A, Johansen JN, Vartdal F, Robins H, Jūratė Šaltytė B, Holmøy T, Olweus J. Eur J Immunol; 2014 Nov; 44(11):3439-52. PubMed ID: 25103993 [Abstract] [Full Text] [Related]
22. Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: a hypothesis. Leffler J, Trend S, Hart PH, French MA. Clin Transl Immunology; 2022 Nov; 11(11):e1418. PubMed ID: 36325491 [Abstract] [Full Text] [Related]
23. Low intrathecal antibody production despite high seroprevalence of Epstein-Barr virus in multiple sclerosis: a review of the literature. Ruprecht K, Wildemann B, Jarius S. J Neurol; 2018 Feb; 265(2):239-252. PubMed ID: 29098417 [Abstract] [Full Text] [Related]
24. Epstein-Barr virus and multiple sclerosis. From evidence to therapeutic strategies. Fernández-Menéndez S, Fernández-Morán M, Fernández-Vega I, Pérez-Álvarez A, Villafani-Echazú J. J Neurol Sci; 2016 Feb 15; 361():213-9. PubMed ID: 26810546 [Abstract] [Full Text] [Related]
25. Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Kalra M, Gerdemann U, Luu JD, Ngo MC, Leen AM, Louis CU, Rooney CM, Gottschalk S. Cytotherapy; 2019 Feb 15; 21(2):212-223. PubMed ID: 30396848 [Abstract] [Full Text] [Related]
26. From bedside to bench: how existing therapies inform the relationship between Epstein-Barr virus and multiple sclerosis. Dyer Z, Tscharke D, Sutton I, Massey J. Clin Transl Immunology; 2023 Feb 15; 12(2):e1437. PubMed ID: 36844913 [Abstract] [Full Text] [Related]
27. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Lünemann JD, Edwards N, Muraro PA, Hayashi S, Cohen JI, Münz C, Martin R. Brain; 2006 Jun 15; 129(Pt 6):1493-506. PubMed ID: 16569670 [Abstract] [Full Text] [Related]
28. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Health Sci Rep; 2024 Feb 15; 7(2):e1898. PubMed ID: 38361801 [Abstract] [Full Text] [Related]
29. Ex vivo generation of effective Epstein-Barr virus (EBV)-specific CD8+ cytotoxic T lymphocytes from the peripheral blood of immunocompetent Epstein Barr virus-seronegative individuals. Metes D, Storkus W, Zeevi A, Patterson K, Logar A, Rowe D, Nalesnik MA, Fung JJ, Rao AS. Transplantation; 2000 Nov 27; 70(10):1507-15. PubMed ID: 11118098 [Abstract] [Full Text] [Related]
30. Primary nasopharyngeal non-Hodgkin lymphoma and its relationship with Epstein-Barr virus infection. Zhang B, Zong Y, He J, Zhong B, Lin S. Chin Med J (Engl); 2003 Jun 27; 116(6):913-7. PubMed ID: 12877806 [Abstract] [Full Text] [Related]
31. Epstein-Barr virus and multiple sclerosis: Updating Pender's hypothesis. Laurence M, Benito-León J. Mult Scler Relat Disord; 2017 Aug 27; 16():8-14. PubMed ID: 28755684 [Abstract] [Full Text] [Related]
32. Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Ressing ME, Horst D, Griffin BD, Tellam J, Zuo J, Khanna R, Rowe M, Wiertz EJ. Semin Cancer Biol; 2008 Dec 27; 18(6):397-408. PubMed ID: 18977445 [Abstract] [Full Text] [Related]
33. Altered CD8+ T cell responses to selected Epstein-Barr virus immunodominant epitopes in patients with multiple sclerosis. Höllsberg P, Hansen HJ, Haahr S. Clin Exp Immunol; 2003 Apr 27; 132(1):137-43. PubMed ID: 12653848 [Abstract] [Full Text] [Related]
34. Successful in vitro generation of Epstein-Barr virus-specific cytotoxic T lymphocytes from severe chronic active EBV patients. Hagihara M, Tsuchiya T, Ueda Y, Masui A, Gansuvd B, Munkhbat B, Inoue H, Hyodo O, Ando K, Kato S, Hotta T. Med Microbiol Immunol; 2001 Apr 27; 189(3):137-45. PubMed ID: 11388611 [Abstract] [Full Text] [Related]
35. EBV and MS: Major cause, minor contribution or red-herring? Burnard S, Lechner-Scott J, Scott RJ. Mult Scler Relat Disord; 2017 Aug 27; 16():24-30. PubMed ID: 28755681 [Abstract] [Full Text] [Related]
36. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, Hastreiter M, Hayes M, Sugden B, Martin L, Moosmann A, Hammerschmidt W. Proc Natl Acad Sci U S A; 2016 Oct 18; 113(42):E6467-E6475. PubMed ID: 27698133 [Abstract] [Full Text] [Related]
37. Epstein-Barr virus and multiple sclerosis. Salvetti M, Giovannoni G, Aloisi F. Curr Opin Neurol; 2009 Jun 18; 22(3):201-6. PubMed ID: 19359987 [Abstract] [Full Text] [Related]
38. Severity of Acute Infectious Mononucleosis Correlates with Cross-Reactive Influenza CD8 T-Cell Receptor Repertoires. Aslan N, Watkin LB, Gil A, Mishra R, Clark FG, Welsh RM, Ghersi D, Luzuriaga K, Selin LK. mBio; 2017 Dec 05; 8(6):. PubMed ID: 29208744 [Abstract] [Full Text] [Related]
39. CD4+ T cells inhibit growth of Epstein-Barr virus-transformed B cells through CD95-CD95 ligand-mediated apoptosis. Wilson AD, Redchenko I, Williams NA, Morgan AJ. Int Immunol; 1998 Aug 05; 10(8):1149-57. PubMed ID: 9723701 [Abstract] [Full Text] [Related]
40. Regression of Epstein-Barr virus-induced B-cell transformation in vitro involves virus-specific CD8+ T cells as the principal effectors and a novel CD4+ T-cell reactivity. Gudgeon NH, Taylor GS, Long HM, Haigh TA, Rickinson AB. J Virol; 2005 May 05; 79(9):5477-88. PubMed ID: 15827162 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]