These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 25510922
1. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar SR. J Neuroeng Rehabil; 2014 Dec 16; 11():165. PubMed ID: 25510922 [Abstract] [Full Text] [Related]
2. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Soekadar SR, Witkowski M, Vitiello N, Birbaumer N. Biomed Tech (Berl); 2015 Jun 16; 60(3):199-205. PubMed ID: 25490027 [Abstract] [Full Text] [Related]
3. Feasibility and Safety of Bilateral Hybrid EEG/EOG Brain/Neural-Machine Interaction. Nann M, Peekhaus N, Angerhöfer C, Soekadar SR. Front Hum Neurosci; 2020 Jun 16; 14():580105. PubMed ID: 33362490 [Abstract] [Full Text] [Related]
5. Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living. Crea S, Nann M, Trigili E, Cordella F, Baldoni A, Badesa FJ, Catalán JM, Zollo L, Vitiello N, Aracil NG, Soekadar SR. Sci Rep; 2018 Jul 17; 8(1):10823. PubMed ID: 30018334 [Abstract] [Full Text] [Related]
6. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback. Lee MH, Williamson J, Won DO, Fazli S, Lee SW. IEEE Trans Neural Syst Rehabil Eng; 2018 Jul 17; 26(7):1443-1459. PubMed ID: 29985154 [Abstract] [Full Text] [Related]
7. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals. Jiang J, Zhou Z, Yin E, Yu Y, Hu D. Biomed Mater Eng; 2014 Jul 17; 24(6):2919-25. PubMed ID: 25226998 [Abstract] [Full Text] [Related]
8. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control. Ma J, Zhang Y, Cichocki A, Matsuno F. IEEE Trans Biomed Eng; 2015 Mar 17; 62(3):876-89. PubMed ID: 25398172 [Abstract] [Full Text] [Related]
9. A Brain-Machine Interface Based on ERD/ERS for an Upper-Limb Exoskeleton Control. Tang Z, Sun S, Zhang S, Chen Y, Li C, Chen S. Sensors (Basel); 2016 Dec 02; 16(12):. PubMed ID: 27918413 [Abstract] [Full Text] [Related]
10. Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Soekadar SR, Witkowski M, Gómez C, Opisso E, Medina J, Cortese M, Cempini M, Carrozza MC, Cohen LG, Birbaumer N, Vitiello N. Sci Robot; 2016 Dec 06; 1(1):. PubMed ID: 33157855 [Abstract] [Full Text] [Related]
11. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. Kawase T, Sakurada T, Koike Y, Kansaku K. J Neural Eng; 2017 Feb 06; 14(1):016015. PubMed ID: 28068293 [Abstract] [Full Text] [Related]
12. Hybrid brain/neural interface and autonomous vision-guided whole-arm exoskeleton control to perform activities of daily living (ADLs). Catalán JM, Trigili E, Nann M, Blanco-Ivorra A, Lauretti C, Cordella F, Ivorra E, Armstrong E, Crea S, Alcañiz M, Zollo L, Soekadar SR, Vitiello N, García-Aracil N. J Neuroeng Rehabil; 2023 May 06; 20(1):61. PubMed ID: 37149621 [Abstract] [Full Text] [Related]
13. Automatic removal of eye-movement and blink artifacts from EEG signals. Gao JF, Yang Y, Lin P, Wang P, Zheng CX. Brain Topogr; 2010 Mar 06; 23(1):105-14. PubMed ID: 20039116 [Abstract] [Full Text] [Related]
14. EEG- and EOG-Based Asynchronous Hybrid BCI: A System Integrating a Speller, a Web Browser, an E-Mail Client, and a File Explorer. He S, Zhou Y, Yu T, Zhang R, Huang Q, Chuai L, Mustafa MU, Gu Z, Yu ZL, Tan H, Li Y. IEEE Trans Neural Syst Rehabil Eng; 2020 Feb 06; 28(2):519-530. PubMed ID: 31870987 [Abstract] [Full Text] [Related]
15. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. Hortal E, Planelles D, Resquin F, Climent JM, Azorín JM, Pons JL. J Neuroeng Rehabil; 2015 Oct 17; 12():92. PubMed ID: 26476869 [Abstract] [Full Text] [Related]
16. A model-based objective evaluation of eye movement correction in EEG recordings. Kierkels JJ, van Boxtel GJ, Vogten LL. IEEE Trans Biomed Eng; 2006 Feb 17; 53(2):246-53. PubMed ID: 16485753 [Abstract] [Full Text] [Related]
17. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case. Romero S, Mañanas MA, Barbanoj MJ. Comput Biol Med; 2008 Mar 17; 38(3):348-60. PubMed ID: 18222418 [Abstract] [Full Text] [Related]
18. Enhancing EEG data quality and precision for cloud-based clinical applications: an evaluation of the SLOG framework. Ghani A, Heinrich H, Brown T, Schellhorn K. Biomed Phys Eng Express; 2024 Oct 04; 10(6):. PubMed ID: 39315479 [Abstract] [Full Text] [Related]
19. Physiological Responses During Hybrid BNCI Control of an Upper-Limb Exoskeleton. Badesa FJ, Diez JA, Catalan JM, Trigili E, Cordella F, Nann M, Crea S, Soekadar SR, Zollo L, Vitiello N, Garcia-Aracil N. Sensors (Basel); 2019 Nov 12; 19(22):. PubMed ID: 31726745 [Abstract] [Full Text] [Related]
20. Hybrid EEG-EOG brain-computer interface system for practical machine control. Punsawad Y, Wongsawat Y, Parnichkun M. Annu Int Conf IEEE Eng Med Biol Soc; 2010 Nov 12; 2010():1360-3. PubMed ID: 21096331 [Abstract] [Full Text] [Related] Page: [Next] [New Search]