These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


140 related items for PubMed ID: 2551190

  • 1. Mechanism for depression of heart sarcolemmal Ca2+ pump by oxygen free radicals.
    Kaneko M, Elimban V, Dhalla NS.
    Am J Physiol; 1989 Sep; 257(3 Pt 2):H804-11. PubMed ID: 2551190
    [Abstract] [Full Text] [Related]

  • 2. Inhibition of heart sarcolemmal Ca(2+)-pump activity by oxygen free radicals.
    Kaneko M, Hayashi H, Kobayashi A, Yamazaki N, Dhalla NS.
    Bratisl Lek Listy; 1991 Jan; 92(1):48-56. PubMed ID: 2021866
    [Abstract] [Full Text] [Related]

  • 3. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals.
    Kaneko M, Beamish RE, Dhalla NS.
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H368-74. PubMed ID: 2537032
    [Abstract] [Full Text] [Related]

  • 4. Relationship between mechanical dysfunction and depression of sarcolemmal Ca(2+)-pump activity in hearts perfused with oxygen free radicals.
    Matsubara T, Dhalla NS.
    Mol Cell Biochem; 1996 Feb; 160-161():179-85. PubMed ID: 8901472
    [Abstract] [Full Text] [Related]

  • 5. Stunned myocardium and oxygen free radicals--sarcolemmal membrane damage due to oxygen free radicals.
    Kaneko M, Hayashi H, Kobayashi A, Yamazaki N, Dhalla NS.
    Jpn Circ J; 1991 Sep; 55(9):885-92. PubMed ID: 1834872
    [Abstract] [Full Text] [Related]

  • 6. Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals.
    Kaneko M, Singal PK, Dhalla NS.
    Basic Res Cardiol; 1990 Sep; 85(1):45-54. PubMed ID: 2158297
    [Abstract] [Full Text] [Related]

  • 7. Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump.
    Xie ZJ, Wang YH, Askari A, Huang WH, Klaunig JE, Askari A.
    J Mol Cell Cardiol; 1990 Aug; 22(8):911-20. PubMed ID: 2172559
    [Abstract] [Full Text] [Related]

  • 8. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals.
    Yuan G, Kaneko M, Masuda H, Hon RB, Kobayashi A, Yamazaki N.
    Biochim Biophys Acta; 1992 Nov 16; 1140(1):78-84. PubMed ID: 1329980
    [Abstract] [Full Text] [Related]

  • 9. Inhibition of cardiac sarcolemma Na(+)-K+ ATPase by oxyradical generating systems.
    Shao Q, Matsubara T, Bhatt SK, Dhalla NS.
    Mol Cell Biochem; 1992 Nov 16; 147(1-2):139-44. PubMed ID: 7494543
    [Abstract] [Full Text] [Related]

  • 10. Reduction of calcium channel antagonist binding sites by oxygen free radicals in rat heart.
    Kaneko M, Lee SL, Wolf CM, Dhalla NS.
    J Mol Cell Cardiol; 1989 Sep 16; 21(9):935-43. PubMed ID: 2553987
    [Abstract] [Full Text] [Related]

  • 11. Possible mechanism responsible for mechanical dysfunction of ischemic myocardium: a role of oxygen free radicals.
    Okabe E, Fujimaki R, Murayama M, Ito H.
    Jpn Circ J; 1989 Sep 16; 53(9):1132-7. PubMed ID: 2557460
    [Abstract] [Full Text] [Related]

  • 12. Alterations in cardiac membrane Ca2+ transport during oxidative stress.
    Dixon IM, Kaneko M, Hata T, Panagia V, Dhalla NS.
    Mol Cell Biochem; 1990 Dec 20; 99(2):125-33. PubMed ID: 1962845
    [Abstract] [Full Text] [Related]

  • 13. Alterations in cardiac contractile proteins due to oxygen free radicals.
    Suzuki S, Kaneko M, Chapman DC, Dhalla NS.
    Biochim Biophys Acta; 1991 May 24; 1074(1):95-100. PubMed ID: 1646033
    [Abstract] [Full Text] [Related]

  • 14. Modification of contractile proteins by oxygen free radicals in rat heart.
    Kaneko M, Masuda H, Suzuki H, Matsumoto Y, Kobayashi A, Yamazaki N.
    Mol Cell Biochem; 1993 Aug 25; 125(2):163-9. PubMed ID: 8283971
    [Abstract] [Full Text] [Related]

  • 15. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals.
    Hess ML, Krause S, Kontos HA.
    Adv Exp Med Biol; 1983 Aug 25; 161():377-89. PubMed ID: 6307008
    [Abstract] [Full Text] [Related]

  • 16. Dihydropyridine binding to the L-type Ca2+ channel in rabbit heart sarcolemma and skeletal muscle transverse-tubules: role of disulfide, sulfhydryl and phosphate groups.
    Murphy BJ, Washkurak AW, Tuana BS.
    Biochim Biophys Acta; 1990 May 02; 1052(2):333-9. PubMed ID: 2159349
    [Abstract] [Full Text] [Related]

  • 17. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats.
    Dixon IM, Hata T, Dhalla NS.
    Am J Physiol; 1992 May 02; 262(5 Pt 2):H1387-94. PubMed ID: 1317126
    [Abstract] [Full Text] [Related]

  • 18. Sarcolemmal Ca2+ transport activities in cardiac hypertrophy caused by pressure overload.
    Nakanishi H, Makino N, Hata T, Matsui H, Yano K, Yanaga T.
    Am J Physiol; 1989 Aug 02; 257(2 Pt 2):H349-56. PubMed ID: 2548404
    [Abstract] [Full Text] [Related]

  • 19. Depression of cardiac sarcolemmal phospholipase D activity by oxidant-induced thiol modification.
    Dai J, Meij JT, Padua R, Panagia V.
    Circ Res; 1992 Oct 02; 71(4):970-7. PubMed ID: 1516167
    [Abstract] [Full Text] [Related]

  • 20. Calcium binding and ATPase activities of heart sarcolemma.
    Dhalla NS, Anand MB, Harrow JA.
    J Biochem; 1976 Jun 02; 79(6):1345-50. PubMed ID: 134031
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.