These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


398 related items for PubMed ID: 25512054

  • 1. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling.
    Pan Y, Li Q, Wang Z, Wang Y, Ma R, Zhu L, He G, Chen R.
    BMC Genomics; 2014 Dec 16; 15(1):1114. PubMed ID: 25512054
    [Abstract] [Full Text] [Related]

  • 2. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility.
    Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L, Zhao J, Sun M, He R, He G.
    Plant Cell; 2007 Mar 16; 19(3):847-61. PubMed ID: 17400897
    [Abstract] [Full Text] [Related]

  • 3. Molecular mapping of two reverse photoperiod-sensitive genic male sterility genes (rpms1 and rpms2) in rice (Oryza sativa L.).
    Peng HF, Zhang ZF, Wu B, Chen XH, Zhang GQ, Zhang ZM, Wan BH, Lu YP.
    Theor Appl Genet; 2008 Dec 16; 118(1):77-83. PubMed ID: 18810384
    [Abstract] [Full Text] [Related]

  • 4. Fine mapping of a gene for non-pollen type thermosensitive genic male sterility in rice (Oryza sativa L.).
    Peng HF, Chen XH, Lu YP, Peng YF, Wan BH, Chen ND, Wu B, Xin SP, Zhang GQ.
    Theor Appl Genet; 2010 Mar 16; 120(5):1013-20. PubMed ID: 20012261
    [Abstract] [Full Text] [Related]

  • 5. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA.
    Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z, Chen L, Liu YG, Zhuang C.
    Cell Res; 2012 Apr 16; 22(4):649-60. PubMed ID: 22349461
    [Abstract] [Full Text] [Related]

  • 6. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice.
    Fan Y, Zhang Q.
    Plant Reprod; 2018 Mar 16; 31(1):3-14. PubMed ID: 29094211
    [Abstract] [Full Text] [Related]

  • 7. Mutation of glucose-methanol-choline oxidoreductase leads to thermosensitive genic male sterility in rice and Arabidopsis.
    Zhang YF, Li YL, Zhong X, Wang JJ, Zhou L, Han Y, Li DD, Wang N, Huang XH, Zhu J, Yang ZN.
    Plant Biotechnol J; 2022 Oct 16; 20(10):2023-2035. PubMed ID: 35781755
    [Abstract] [Full Text] [Related]

  • 8. Comparative proteomics analysis reveals the mechanism of fertility alternation of thermosensitive genic male sterile rice lines under low temperature inducement.
    Song L, Liu Z, Tong J, Xiao L, Ma H, Zhang H.
    Proteomics; 2015 Jun 16; 15(11):1884-905. PubMed ID: 25641954
    [Abstract] [Full Text] [Related]

  • 9. Transcriptome analysis of the thermosensitive genic male-sterile line provides new insights into fertility alteration in rice (Oryza sativa).
    Li C, Tao RF, Li Y, Duan MH, Xu JH.
    Genomics; 2020 May 16; 112(3):2119-2129. PubMed ID: 31837402
    [Abstract] [Full Text] [Related]

  • 10. Transcriptomic analysis reveals the mechanism of thermosensitive genic male sterility (TGMS) of Brassica napus under the high temperature inducement.
    Tang X, Hao YJ, Lu JX, Lu G, Zhang T.
    BMC Genomics; 2019 Aug 13; 20(1):644. PubMed ID: 31409283
    [Abstract] [Full Text] [Related]

  • 11. Temperature and light reverse the fertility of rice P/TGMS line ostms19 via reactive oxygen species homeostasis.
    Zhou L, Mao YC, Yang YM, Wang JJ, Zhong X, Han Y, Zhang YF, Shi QS, Huang XH, Meyers BC, Zhu J, Yang ZN.
    Plant Biotechnol J; 2024 Jul 13; 22(7):2020-2032. PubMed ID: 38421616
    [Abstract] [Full Text] [Related]

  • 12. Polyploidy Enhances F1 Pollen Sterility Loci Interactions That Increase Meiosis Abnormalities and Pollen Sterility in Autotetraploid Rice.
    Wu J, Shahid MQ, Chen L, Chen Z, Wang L, Liu X, Lu Y.
    Plant Physiol; 2015 Dec 13; 169(4):2700-17. PubMed ID: 26511913
    [Abstract] [Full Text] [Related]

  • 13. RNA Sequencing Reveals Rice Genes Involved in Male Reproductive Development under Temperature Alteration.
    Khlaimongkhon S, Chakhonkaen S, Tongmark K, Sangarwut N, Panyawut N, Wasinanon T, Sikaewtung K, Wanchana S, Mongkolsiriwatana C, Chunwonges J, Muangprom A.
    Plants (Basel); 2021 Mar 30; 10(4):. PubMed ID: 33808467
    [Abstract] [Full Text] [Related]

  • 14. Generation of a new thermo-sensitive genic male sterile rice line by targeted mutagenesis of TMS5 gene through CRISPR/Cas9 system.
    Barman HN, Sheng Z, Fiaz S, Zhong M, Wu Y, Cai Y, Wang W, Jiao G, Tang S, Wei X, Hu P.
    BMC Plant Biol; 2019 Mar 20; 19(1):109. PubMed ID: 30894127
    [Abstract] [Full Text] [Related]

  • 15. RNase Z(S1) processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice.
    Zhou H, Zhou M, Yang Y, Li J, Zhu L, Jiang D, Dong J, Liu Q, Gu L, Zhou L, Feng M, Qin P, Hu X, Song C, Shi J, Song X, Ni E, Wu X, Deng Q, Liu Z, Chen M, Liu YG, Cao X, Zhuang C.
    Nat Commun; 2014 Sep 11; 5():4884. PubMed ID: 25208476
    [Abstract] [Full Text] [Related]

  • 16. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice.
    Qi Y, Liu Q, Zhang L, Mao B, Yan D, Jin Q, He Z.
    Theor Appl Genet; 2014 May 11; 127(5):1173-82. PubMed ID: 24619164
    [Abstract] [Full Text] [Related]

  • 17. Reproductive tissue-specific translatome of a rice thermo-sensitive genic male sterile line.
    Liu W, Sun J, Li J, Liu C, Si F, Yan B, Wang Z, Song X, Yang Y, Zhu Y, Cao X.
    J Genet Genomics; 2022 Jul 11; 49(7):624-635. PubMed ID: 35041992
    [Abstract] [Full Text] [Related]

  • 18. A quantitative proteomic analysis of the molecular mechanism underlying fertility conversion in thermo-sensitive genetic male sterility line AnnongS-1.
    Wang S, Tian Q, Zhou S, Mao D, Chen L.
    BMC Plant Biol; 2019 Feb 11; 19(1):65. PubMed ID: 30744566
    [Abstract] [Full Text] [Related]

  • 19. Slow Development Restores the Fertility of Photoperiod-Sensitive Male-Sterile Plant Lines.
    Zhang C, Xu T, Ren MY, Zhu J, Shi QS, Zhang YF, Qi YW, Huang MJ, Song L, Xu P, Yang ZN.
    Plant Physiol; 2020 Oct 11; 184(2):923-932. PubMed ID: 32796091
    [Abstract] [Full Text] [Related]

  • 20. Low temperature compensates for defective tapetum initiation to restore the fertility of the novel TGMS line ostms15.
    Han Y, Jiang SZ, Zhong X, Chen X, Ma CK, Yang YM, Mao YC, Zhou SD, Zhou L, Zhang YF, Huang XH, Zhang H, Li LG, Zhu J, Yang ZN.
    Plant Biotechnol J; 2023 Aug 11; 21(8):1659-1670. PubMed ID: 37205779
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.