These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 2551414

  • 1. [Effect of the Ca ionophore A-23187 on the plasmatic and mitochondrial potentials of the brain synaptosomes in rats: fluorescence measurements].
    Tiniakova LR, Antonikov IM, Glebov RN.
    Biull Eksp Biol Med; 1989 Jun; 107(6):678-80. PubMed ID: 2551414
    [Abstract] [Full Text] [Related]

  • 2. Calcium transport by intact synaptosomes. Influence of ionophore A23187 on plasma-membrane potential, plasma-membrane calcium transport, mitochondrial membrane potential, respiration, cytosolic free-calcium concentration and noradrenaline release.
    Akerman KE, Nicholls DG.
    Eur J Biochem; 1981 Mar 16; 115(1):67-73. PubMed ID: 6785087
    [Abstract] [Full Text] [Related]

  • 3. Comparative action of methylmercury and divalent inorganic mercury on nerve terminal and intraterminal mitochondrial membrane potentials.
    Hare MF, Atchison WD.
    J Pharmacol Exp Ther; 1992 Apr 16; 261(1):166-72. PubMed ID: 1560362
    [Abstract] [Full Text] [Related]

  • 4. Methylmercury increases intracellular concentrations of Ca++ and heavy metals in NG108-15 cells.
    Hare MF, McGinnis KM, Atchison WD.
    J Pharmacol Exp Ther; 1993 Sep 16; 266(3):1626-35. PubMed ID: 8371160
    [Abstract] [Full Text] [Related]

  • 5. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK, Blaustein MP.
    J Physiol; 1985 Apr 16; 361():441-57. PubMed ID: 2580982
    [Abstract] [Full Text] [Related]

  • 6. [Influence of calcium ionophore A23187 on neurotransmitter release in rat brain synaptosomes].
    Vasim TV, Lavrukevich TV, Rakovich AA, Fedorovich SV, Konev SV.
    Biofizika; 2004 Apr 16; 49(3):524-8. PubMed ID: 15327213
    [Abstract] [Full Text] [Related]

  • 7. Mitochondrial dysfunction is related to necrosis-like programmed cell death induced by A23187 in CEM cells.
    Hamahata K, Adachi S, Matsubara H, Okada M, Imai T, Watanabe K, Toyokuni SY, Ueno M, Wakabayashi S, Katanosaka Y, Akiba S, Kubota M, Nakahata T.
    Eur J Pharmacol; 2005 Jun 15; 516(3):187-96. PubMed ID: 15963976
    [Abstract] [Full Text] [Related]

  • 8. Modulation of levels of free calcium within synaptosomes by organochlorine insecticides.
    Komulainen H, Bondy SC.
    J Pharmacol Exp Ther; 1987 May 15; 241(2):575-81. PubMed ID: 2437290
    [Abstract] [Full Text] [Related]

  • 9. delta-Aminolevulinic acid-induced synaptosomal Ca2+ uptake and mitochondrial permeabilization.
    Penatti CA, Bechara EJ, Demasi M.
    Arch Biochem Biophys; 1996 Nov 01; 335(1):53-60. PubMed ID: 8914834
    [Abstract] [Full Text] [Related]

  • 10. [Interaction of diS-C3-(5) and ethylrhodamine with lymphocyte mitochondria].
    Bakeeva LE, Derevianchenko IG, Konoshenko GI, Mokhova EN.
    Biokhimiia; 1983 Sep 01; 48(9):1463-70. PubMed ID: 6626607
    [Abstract] [Full Text] [Related]

  • 11. Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes.
    Fink K, Meder WP, Clusmann H, Göthert M.
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov 01; 366(5):458-63. PubMed ID: 12382075
    [Abstract] [Full Text] [Related]

  • 12. Estradiol attenuates mitochondrial depolarization in polyol-stressed lens epithelial cells.
    Flynn JM, Cammarata PR.
    Mol Vis; 2006 Apr 04; 12():271-82. PubMed ID: 16617294
    [Abstract] [Full Text] [Related]

  • 13. Depolarization of synaptosomal membranes: a study of mechanism by which rhodamine 6G measures membrane potential.
    Joshi PG, Pant HC.
    Indian J Biochem Biophys; 1991 Apr 04; 28(2):140-5. PubMed ID: 1879870
    [Abstract] [Full Text] [Related]

  • 14. Cellular mechanisms underlying the increase in cytosolic free calcium concentration induced by methylmercury in cerebrocortical synaptosomes from guinea pig.
    Kauppinen RA, Komulainen H, Taipale H.
    J Pharmacol Exp Ther; 1989 Mar 04; 248(3):1248-54. PubMed ID: 2703974
    [Abstract] [Full Text] [Related]

  • 15. [Mechanisms of calcium transport in brain synaptosomes as affected by depolarization].
    Kravtsov GM, Pokudin NI, Gulak PV, Orlov SN.
    Biokhimiia; 1983 Aug 04; 48(8):1249-55. PubMed ID: 6138103
    [Abstract] [Full Text] [Related]

  • 16. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials.
    Blaustein MP, Goldring JM.
    J Physiol; 1975 Jun 04; 247(3):589-615. PubMed ID: 49421
    [Abstract] [Full Text] [Related]

  • 17. From Beaumont to poison ivy: marine sponge cell aggregation and the secretory basis of inflammation.
    Dunham PB, Vosshall LB, Bayer CA, Rich AM, Weissmann G.
    Fed Proc; 1985 Nov 04; 44(14):2914-24. PubMed ID: 3932096
    [Abstract] [Full Text] [Related]

  • 18. Barium evokes glutamate release from rat brain synaptosomes by membrane depolarization: involvement of K+, Na+, and Ca2+ channels.
    Sihra TS, Piomelli D, Nichols RA.
    J Neurochem; 1993 Oct 04; 61(4):1220-30. PubMed ID: 7690845
    [Abstract] [Full Text] [Related]

  • 19. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes.
    Levesque PC, Hare MF, Atchison WD.
    Toxicol Appl Pharmacol; 1992 Jul 04; 115(1):11-20. PubMed ID: 1378659
    [Abstract] [Full Text] [Related]

  • 20. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements.
    Wilson HA, Chused TM.
    J Cell Physiol; 1985 Oct 04; 125(1):72-81. PubMed ID: 2413058
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.