These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


878 related items for PubMed ID: 25517187

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Surface Modification of lactose carrier particles using a fluid bed coater to improve fine particle fraction for dry powder inhalers.
    Gong QQ, Tay JYS, Veronica N, Xu J, Heng PWS, Zhang YP, Liew CV.
    Pharm Dev Technol; 2023 Feb; 28(2):164-175. PubMed ID: 36683577
    [Abstract] [Full Text] [Related]

  • 23. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.
    Holmes MS, Seheult JN, O'Connell P, D'Arcy S, Ehrhardt C, Healy AM, Costello RW, Reilly RB.
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):247-53. PubMed ID: 25393346
    [Abstract] [Full Text] [Related]

  • 24. Effect of carrier particle shape on dry powder inhaler performance.
    Kaialy W, Alhalaweh A, Velaga SP, Nokhodchi A.
    Int J Pharm; 2011 Dec 12; 421(1):12-23. PubMed ID: 21945739
    [Abstract] [Full Text] [Related]

  • 25. Elucidating the Effect of Fine Lactose Ratio on the Rheological Properties and Aerodynamic Behavior of Dry Powder for Inhalation.
    Sun Y, Qin L, Li J, Su J, Song R, Zhang X, Guan J, Mao S.
    AAPS J; 2021 Apr 15; 23(3):55. PubMed ID: 33856568
    [Abstract] [Full Text] [Related]

  • 26. Improving Dry Powder Inhaler Performance by Surface Roughening of Lactose Carrier Particles.
    Tan BM, Chan LW, Heng PW.
    Pharm Res; 2016 Aug 15; 33(8):1923-35. PubMed ID: 27091033
    [Abstract] [Full Text] [Related]

  • 27. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate.
    Xu Z, Mansour HM, Mulder T, McLean R, Langridge J, Hickey AJ.
    J Pharm Sci; 2010 Aug 15; 99(8):3398-414. PubMed ID: 20198688
    [Abstract] [Full Text] [Related]

  • 28. An insight into powder entrainment and drug delivery mechanisms from a modified Rotahaler®.
    Sim S, Margo K, Parks J, Howell R, Hebbink GA, Orlando L, Larson I, Leslie P, Ho L, Morton DA.
    Int J Pharm; 2014 Dec 30; 477(1-2):351-60. PubMed ID: 25196720
    [Abstract] [Full Text] [Related]

  • 29. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM, Amaro MI, Paluch KJ, Tajber L.
    Adv Drug Deliv Rev; 2014 Aug 30; 75():32-52. PubMed ID: 24735676
    [Abstract] [Full Text] [Related]

  • 30. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation.
    Kubavat HA, Shur J, Ruecroft G, Hipkiss D, Price R.
    Int J Pharm; 2012 Jul 01; 430(1-2):26-33. PubMed ID: 22449413
    [Abstract] [Full Text] [Related]

  • 31. Dry powder formulations for inhalation of fluticasone propionate and salmeterol xinafoate microcrystals.
    Murnane D, Martin GP, Marriott C.
    J Pharm Sci; 2009 Feb 01; 98(2):503-15. PubMed ID: 18506819
    [Abstract] [Full Text] [Related]

  • 32. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices.
    Ooi J, Gill C, Young PM, Traini D.
    Curr Drug Deliv; 2015 Feb 01; 12(1):40-6. PubMed ID: 25146438
    [Abstract] [Full Text] [Related]

  • 33. Powder flow analysis: A simple method to indicate the ideal amount of lactose fines in dry powder inhaler formulations.
    Hertel M, Schwarz E, Kobler M, Hauptstein S, Steckel H, Scherließ R.
    Int J Pharm; 2018 Jan 15; 535(1-2):59-67. PubMed ID: 29100914
    [Abstract] [Full Text] [Related]

  • 34. Protection of hydrophobic amino acids against moisture-induced deterioration in the aerosolization performance of highly hygroscopic spray-dried powders.
    Yu J, Chan HK, Gengenbach T, Denman JA.
    Eur J Pharm Biopharm; 2017 Oct 15; 119():224-234. PubMed ID: 28655664
    [Abstract] [Full Text] [Related]

  • 35. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate.
    Kaialy W, Ticehurst M, Nokhodchi A.
    Int J Pharm; 2012 Feb 28; 423(2):184-94. PubMed ID: 22197772
    [Abstract] [Full Text] [Related]

  • 36. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN, Robins E, Flament MP.
    Eur J Pharm Biopharm; 2010 Nov 28; 76(3):464-9. PubMed ID: 20854906
    [Abstract] [Full Text] [Related]

  • 37. Effect of milling and sieving on functionality of dry powder inhalation products.
    Steckel H, Markefka P, teWierik H, Kammelar R.
    Int J Pharm; 2006 Feb 17; 309(1-2):51-9. PubMed ID: 16377105
    [Abstract] [Full Text] [Related]

  • 38. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers.
    Lucas P, Anderson K, Staniforth JN.
    Pharm Res; 1998 Apr 17; 15(4):562-9. PubMed ID: 9587952
    [Abstract] [Full Text] [Related]

  • 39. Influence of crystal form of ipratropium bromide on micronisation and aerosolisation behaviour in dry powder inhaler formulations.
    Shur J, Kubavat HA, Ruecroft G, Hipkiss D, Price R.
    J Pharm Pharmacol; 2012 Sep 17; 64(9):1326-36. PubMed ID: 22881444
    [Abstract] [Full Text] [Related]

  • 40. Limitations of high dose carrier based formulations.
    Yeung S, Traini D, Tweedie A, Lewis D, Church T, Young PM.
    Int J Pharm; 2018 Jun 10; 544(1):141-152. PubMed ID: 29649519
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 44.