These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
401 related items for PubMed ID: 25527290
1. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae. Tate JJ, Rai R, Cooper TG. Genetics; 2015 Feb; 199(2):455-74. PubMed ID: 25527290 [Abstract] [Full Text] [Related]
3. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae. Kulkarni A, Buford TD, Rai R, Cooper TG. FEMS Yeast Res; 2006 Mar; 6(2):218-29. PubMed ID: 16487345 [Abstract] [Full Text] [Related]
4. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. Tate JJ, Georis I, Dubois E, Cooper TG. J Biol Chem; 2010 Jun 04; 285(23):17880-95. PubMed ID: 20378536 [Abstract] [Full Text] [Related]
5. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. Georis I, Tate JJ, Cooper TG, Dubois E. J Biol Chem; 2008 Apr 04; 283(14):8919-29. PubMed ID: 18245087 [Abstract] [Full Text] [Related]
6. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation. Tate JJ, Georis I, Rai R, Vierendeels F, Dubois E, Cooper TG. G3 (Bethesda); 2015 May 29; 5(8):1625-38. PubMed ID: 26024867 [Abstract] [Full Text] [Related]
8. General Amino Acid Control and 14-3-3 Proteins Bmh1/2 Are Required for Nitrogen Catabolite Repression-Sensitive Regulation of Gln3 and Gat1 Localization. Tate JJ, Buford D, Rai R, Cooper TG. Genetics; 2017 Feb 29; 205(2):633-655. PubMed ID: 28007891 [Abstract] [Full Text] [Related]
9. Five conditions commonly used to down-regulate tor complex 1 generate different physiological situations exhibiting distinct requirements and outcomes. Tate JJ, Cooper TG. J Biol Chem; 2013 Sep 20; 288(38):27243-27262. PubMed ID: 23935103 [Abstract] [Full Text] [Related]
10. Intranuclear function for protein phosphatase 2A: Pph21 and Pph22 are required for rapamycin-induced GATA factor binding to the DAL5 promoter in yeast. Georis I, Tate JJ, Feller A, Cooper TG, Dubois E. Mol Cell Biol; 2011 Jan 20; 31(1):92-104. PubMed ID: 20974806 [Abstract] [Full Text] [Related]
11. Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation. Tate JJ, Cooper TG. J Biol Chem; 2007 Jun 22; 282(25):18467-18480. PubMed ID: 17439949 [Abstract] [Full Text] [Related]
12. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation. Feller A, Georis I, Tate JJ, Cooper TG, Dubois E. J Biol Chem; 2013 Jan 18; 288(3):1841-55. PubMed ID: 23184930 [Abstract] [Full Text] [Related]
13. gln3 mutations dissociate responses to nitrogen limitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1. Rai R, Tate JJ, Nelson DR, Cooper TG. J Biol Chem; 2013 Jan 25; 288(4):2789-804. PubMed ID: 23223232 [Abstract] [Full Text] [Related]
14. Methionine sulfoximine treatment and carbon starvation elicit Snf1-independent phosphorylation of the transcription activator Gln3 in Saccharomyces cerevisiae. Tate JJ, Rai R, Cooper TG. J Biol Chem; 2005 Jul 22; 280(29):27195-204. PubMed ID: 15911613 [Abstract] [Full Text] [Related]
15. Constitutive and nitrogen catabolite repression-sensitive production of Gat1 isoforms. Rai R, Tate JJ, Georis I, Dubois E, Cooper TG. J Biol Chem; 2014 Jan 31; 289(5):2918-33. PubMed ID: 24324255 [Abstract] [Full Text] [Related]
16. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain. Tate JJ, Feller A, Dubois E, Cooper TG. J Biol Chem; 2006 Dec 08; 281(49):37980-92. PubMed ID: 17015442 [Abstract] [Full Text] [Related]
17. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine. Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG. Genetics; 2015 Nov 08; 201(3):989-1016. PubMed ID: 26333687 [Abstract] [Full Text] [Related]
18. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E. FEMS Yeast Res; 2006 Aug 08; 6(5):777-91. PubMed ID: 16879428 [Abstract] [Full Text] [Related]
19. Components of Golgi-to-vacuole trafficking are required for nitrogen- and TORC1-responsive regulation of the yeast GATA factors. Fayyadkazan M, Tate JJ, Vierendeels F, Cooper TG, Dubois E, Georis I. Microbiologyopen; 2014 Jun 08; 3(3):271-87. PubMed ID: 24644271 [Abstract] [Full Text] [Related]
20. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae. Numamoto M, Tagami S, Ueda Y, Imabeppu Y, Sasano Y, Sugiyama M, Maekawa H, Harashima S. J Biosci Bioeng; 2015 Aug 08; 120(2):121-7. PubMed ID: 25641578 [Abstract] [Full Text] [Related] Page: [Next] [New Search]