These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 25529683
1. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase. Cai X, Yu J, Xu L, Liu R, Yang J. Food Chem; 2015 May 01; 174():291-8. PubMed ID: 25529683 [Abstract] [Full Text] [Related]
2. Study on interaction between human salivary α-amylase and sorghum procyanidin tetramer: Binding characteristics and structural analysis. Zhao L, Wang F, Lu Q, Liu R, Tian J, Huang Y. Int J Biol Macromol; 2018 Oct 15; 118(Pt A):1136-1141. PubMed ID: 30001600 [Abstract] [Full Text] [Related]
3. Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation. Dai T, Chen J, Li Q, Li P, Hu P, Liu C, Li T. Int J Biol Macromol; 2018 Jul 01; 113():427-433. PubMed ID: 29408006 [Abstract] [Full Text] [Related]
4. Interaction between sorghum procyanidin tetramers and the catalytic region of glucosyltransferases-I from Streptococcus mutans UA159. Yu J, Yan F, Lu Q, Liu R. Food Res Int; 2018 Oct 01; 112():152-159. PubMed ID: 30131122 [Abstract] [Full Text] [Related]
5. Interaction mechanism between α-glucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques. Zhao L, Wen L, Lu Q, Liu R. Int J Biol Macromol; 2020 Jan 15; 143():173-180. PubMed ID: 31816382 [Abstract] [Full Text] [Related]
6. Comparative Study of the Interactions between Ovalbumin and five Antioxidants by Spectroscopic Methods. Li X, Yan Y. J Fluoresc; 2017 Jan 15; 27(1):213-225. PubMed ID: 27722919 [Abstract] [Full Text] [Related]
7. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity. Sun L, Gidley MJ, Warren FJ. Food Chem; 2018 Aug 30; 258():164-173. PubMed ID: 29655719 [Abstract] [Full Text] [Related]
8. The mechanism of interactions between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Sun L, Gidley MJ, Warren FJ. Mol Nutr Food Res; 2017 Oct 30; 61(10):. PubMed ID: 28618113 [Abstract] [Full Text] [Related]
9. Molecular study of mucin-procyanidin interaction by fluorescence quenching and Saturation Transfer Difference (STD)-NMR. Brandão E, Santos Silva M, García-Estévez I, Mateus N, de Freitas V, Soares S. Food Chem; 2017 Aug 01; 228():427-434. PubMed ID: 28317744 [Abstract] [Full Text] [Related]
10. Understanding the binding of procyanidins to pancreatic elastase by experimental and computational methods. Brás NF, Gonçalves R, Fernandes PA, Mateus N, Ramos MJ, de Freitas V. Biochemistry; 2010 Jun 29; 49(25):5097-108. PubMed ID: 20481639 [Abstract] [Full Text] [Related]
11. Synthesis and experimental/computational characterization of sorghum procyanidins-gelatin nanoparticles. Carmelo-Luna FJ, Mendoza-Wilson AM, Ramos-Clamont Montfort G, Lizardi-Mendoza J, Madera-Santana T, Lardizábal-Gutiérrez D, Quintana-Owen P. Bioorg Med Chem; 2021 Jul 15; 42():116240. PubMed ID: 34116380 [Abstract] [Full Text] [Related]
12. Processing of sorghum (Sorghum bicolor) and sorghum products alters procyanidin oligomer and polymer distribution and content. Awika JM, Dykes L, Gu L, Rooney LW, Prior RL. J Agric Food Chem; 2003 Aug 27; 51(18):5516-21. PubMed ID: 12926907 [Abstract] [Full Text] [Related]
13. In vitro inhibition of pancreatic α-amylase by spherical and polygonal starch nanoparticles. Jiang S, Li M, Chang R, Xiong L, Sun Q. Food Funct; 2018 Jan 24; 9(1):355-363. PubMed ID: 29206258 [Abstract] [Full Text] [Related]
14. Biological relevance of the interaction between procyanidins and trypsin: a multitechnique approach. Gonçalves R, Mateus N, de Freitas V. J Agric Food Chem; 2010 Nov 24; 58(22):11924-31. PubMed ID: 21047067 [Abstract] [Full Text] [Related]
15. Influence of carbohydrates on the interaction of procyanidin B3 with trypsin. Gonçalves R, Mateus N, De Freitas V. J Agric Food Chem; 2011 Nov 09; 59(21):11794-802. PubMed ID: 21950419 [Abstract] [Full Text] [Related]
16. Construction of functional soybean peptide-cyclodextrin carboxylate nanoparticles and their interaction with porcine pancreatic α-amylase. Liu Y, Li X, Sang S, Julian McClements D, Chen L, Long J, Jiao A, Wang J, Xu X, Jin Z, Qiu C. Food Res Int; 2022 Dec 09; 162(Pt B):112054. PubMed ID: 36461314 [Abstract] [Full Text] [Related]
17. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch. Jiang C, Chen Y, Ye X, Wang L, Shao J, Jing H, Jiang C, Wang H, Ma C. Int J Biol Macromol; 2021 Mar 01; 172():503-514. PubMed ID: 33454330 [Abstract] [Full Text] [Related]
18. Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Liang M, Liu R, Qi W, Su R, Yu Y, Wang L, He Z. Food Chem; 2013 Jun 01; 138(2-3):1596-603. PubMed ID: 23411286 [Abstract] [Full Text] [Related]
19. Chiral recognition of apple procyanidins by complexation with oxotitanium phthalocyanine. Muranaka A, Yoshida K, Shoji T, Moriichi N, Masumoto S, Kanda T, Ohtake Y, Kobayashi N. Org Lett; 2006 Jun 08; 8(12):2447-50. PubMed ID: 16737285 [Abstract] [Full Text] [Related]
20. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary alpha-amylase (HSA) by fluorescence quenching. Soares S, Mateus N, Freitas Vd. J Agric Food Chem; 2007 Aug 08; 55(16):6726-35. PubMed ID: 17636939 [Abstract] [Full Text] [Related] Page: [Next] [New Search]