These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
692 related items for PubMed ID: 25536512
1. Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Romaní A, Pereira F, Johansson B, Domingues L. Bioresour Technol; 2015 Mar; 179():150-158. PubMed ID: 25536512 [Abstract] [Full Text] [Related]
2. Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Baptista SL, Cunha JT, Romaní A, Domingues L. Bioresour Technol; 2018 Nov; 267():481-491. PubMed ID: 30041142 [Abstract] [Full Text] [Related]
3. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005. Zhu JQ, Qin L, Li BZ, Yuan YJ. Bioresour Technol; 2014 Oct; 169():9-18. PubMed ID: 25016219 [Abstract] [Full Text] [Related]
4. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK, Um Y, Woo HM, Kim KH, Lee SM. Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [Abstract] [Full Text] [Related]
5. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J. Bioresour Technol; 2016 Sep; 216():227-37. PubMed ID: 27240239 [Abstract] [Full Text] [Related]
6. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis. Kim SR, Kwee NR, Kim H, Jin YS. FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717 [Abstract] [Full Text] [Related]
7. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums. Zhang GC, Turner TL, Jin YS. J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721 [Abstract] [Full Text] [Related]
8. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Lopes DD, Rosa CA, Hector RE, Dien BS, Mertens JA, Ayub MAZ. J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041 [Abstract] [Full Text] [Related]
9. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M, Jeppsson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U. Biotechnol Bioeng; 2004 Jul 05; 87(1):90-8. PubMed ID: 15211492 [Abstract] [Full Text] [Related]
10. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A. J Biotechnol; 2012 Apr 30; 158(4):203-10. PubMed ID: 21741417 [Abstract] [Full Text] [Related]
11. Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Ohgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. J Biotechnol; 2006 Dec 01; 126(4):488-98. PubMed ID: 16828190 [Abstract] [Full Text] [Related]
12. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Konishi J, Fukuda A, Mutaguchi K, Uemura T. Biotechnol Lett; 2015 Aug 01; 37(8):1623-30. PubMed ID: 25994575 [Abstract] [Full Text] [Related]
13. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J, Qiu C, Shen Y, Li H, Bao X. FEMS Yeast Res; 2017 Jun 01; 17(4):. PubMed ID: 28582494 [Abstract] [Full Text] [Related]
14. Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B. Appl Environ Microbiol; 2001 Sep 01; 67(9):4249-55. PubMed ID: 11526030 [Abstract] [Full Text] [Related]
15. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. Microb Cell Fact; 2010 Mar 10; 9():16. PubMed ID: 20219100 [Abstract] [Full Text] [Related]
16. Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Lee YG, Jin YS, Cha YL, Seo JH. Bioresour Technol; 2017 Mar 10; 228():355-361. PubMed ID: 28088640 [Abstract] [Full Text] [Related]
17. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V, Brunner B, Müller G, Nidetzky B. Biotechnol Bioeng; 2017 Jan 10; 114(1):163-171. PubMed ID: 27426989 [Abstract] [Full Text] [Related]
18. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. Ha SJ, Kim SR, Kim H, Du J, Cate JH, Jin YS. Bioresour Technol; 2013 Dec 10; 149():525-31. PubMed ID: 24140899 [Abstract] [Full Text] [Related]
19. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. Parreiras LS, Breuer RJ, Avanasi Narasimhan R, Higbee AJ, La Reau A, Tremaine M, Qin L, Willis LB, Bice BD, Bonfert BL, Pinhancos RC, Balloon AJ, Uppugundla N, Liu T, Li C, Tanjore D, Ong IM, Li H, Pohlmann EL, Serate J, Withers ST, Simmons BA, Hodge DB, Westphall MS, Coon JJ, Dale BE, Balan V, Keating DH, Zhang Y, Landick R, Gasch AP, Sato TK. PLoS One; 2014 Dec 10; 9(9):e107499. PubMed ID: 25222864 [Abstract] [Full Text] [Related]
20. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related] Page: [Next] [New Search]