These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


392 related items for PubMed ID: 25537203

  • 1. Loss of thiol repair systems in human cataractous lenses.
    Wei M, Xing KY, Fan YC, Libondi T, Lou MF.
    Invest Ophthalmol Vis Sci; 2014 Dec 23; 56(1):598-605. PubMed ID: 25537203
    [Abstract] [Full Text] [Related]

  • 2. Revival of glutathione reductase in human cataractous and clear lens extracts by thioredoxin and thioredoxin reductase, in conjunction with alpha-crystallin or thioltransferase.
    Yan H, Harding JJ, Xing K, Lou MF.
    Curr Eye Res; 2007 May 23; 32(5):455-63. PubMed ID: 17514531
    [Abstract] [Full Text] [Related]

  • 3. Effect of age on the thioltransferase (glutaredoxin) and thioredoxin systems in the human lens.
    Xing KY, Lou MF.
    Invest Ophthalmol Vis Sci; 2010 Dec 23; 51(12):6598-604. PubMed ID: 20610843
    [Abstract] [Full Text] [Related]

  • 4. Relationship of protein-glutathione mixed disulfide and thioltransferase in H2O2-induced cataract in cultured pig lens.
    Wang GM, Raghavachari N, Lou MF.
    Exp Eye Res; 1997 May 23; 64(5):693-700. PubMed ID: 9245898
    [Abstract] [Full Text] [Related]

  • 5. Induction of thioltransferase and thioredoxin/thioredoxin reductase systems in cultured porcine lenses under oxidative stress.
    Moon S, Fernando MR, Lou MF.
    Invest Ophthalmol Vis Sci; 2005 Oct 23; 46(10):3783-9. PubMed ID: 16186363
    [Abstract] [Full Text] [Related]

  • 6. Does oxidative stress play any role in diabetic cataract formation? ----Re-evaluation using a thioltransferase gene knockout mouse model.
    Zhang J, Yan H, Lou MF.
    Exp Eye Res; 2017 Aug 23; 161():36-42. PubMed ID: 28579033
    [Abstract] [Full Text] [Related]

  • 7. Ultraviolet radiation-induced cataract in mice: the effect of age and the potential biochemical mechanism.
    Zhang J, Yan H, Löfgren S, Tian X, Lou MF.
    Invest Ophthalmol Vis Sci; 2012 Oct 19; 53(11):7276-85. PubMed ID: 23010639
    [Abstract] [Full Text] [Related]

  • 8. [Thioltransferase and thioredoxin system in cataract].
    Chai F, Yan H.
    Yan Ke Xue Bao; 2007 Mar 19; 23(1):15-9. PubMed ID: 17444035
    [Abstract] [Full Text] [Related]

  • 9. Thiol regulation in the lens.
    Lou MF.
    J Ocul Pharmacol Ther; 2000 Apr 19; 16(2):137-48. PubMed ID: 10803424
    [Abstract] [Full Text] [Related]

  • 10. Thioredoxin, thioredoxin reductase, and alpha-crystallin revive inactivated glyceraldehyde 3-phosphate dehydrogenase in human aged and cataract lens extracts.
    Yan H, Lou MF, Fernando MR, Harding JJ.
    Mol Vis; 2006 Oct 02; 12():1153-9. PubMed ID: 17093401
    [Abstract] [Full Text] [Related]

  • 11. Thioltransferase is present in the lens epithelial cells as a highly oxidative stress-resistant enzyme.
    Wang GM, Wu F, Raghavachari N, Reddan JR.
    Exp Eye Res; 1998 Apr 02; 66(4):477-85. PubMed ID: 9593640
    [Abstract] [Full Text] [Related]

  • 12. Redox regulation in the lens.
    Lou MF.
    Prog Retin Eye Res; 2003 Sep 02; 22(5):657-82. PubMed ID: 12892645
    [Abstract] [Full Text] [Related]

  • 13. [The oxidative stress in the cataract formation].
    Obara Y.
    Nippon Ganka Gakkai Zasshi; 1995 Dec 02; 99(12):1303-41. PubMed ID: 8571853
    [Abstract] [Full Text] [Related]

  • 14. Does glutathione-S-transferase dethiolate lens protein-thiol mixed disulfides?-A comparative study with thioltransferase.
    Raghavachari N, Qiao F, Lou MF.
    Exp Eye Res; 1999 Jun 02; 68(6):715-24. PubMed ID: 10375435
    [Abstract] [Full Text] [Related]

  • 15. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D, Lamba OP, Yappert MC.
    Exp Eye Res; 1993 Aug 02; 57(2):199-208. PubMed ID: 8405186
    [Abstract] [Full Text] [Related]

  • 16. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase.
    Xing KY, Lou MF.
    Exp Eye Res; 2002 Jan 02; 74(1):113-22. PubMed ID: 11878824
    [Abstract] [Full Text] [Related]

  • 17. Topographical distribution of lactate dehydrogenase activity in human clear eye lenses and in lenses with different types of senile cataract: a histochemical investigation.
    Pau H, Hartwig HG, Fassbender R.
    Graefes Arch Clin Exp Ophthalmol; 1997 Oct 02; 235(10):611-7. PubMed ID: 9349944
    [Abstract] [Full Text] [Related]

  • 18. Blood and lens lipid peroxidation and antioxidant status in normal individuals, senile and diabetic cataractous patients.
    Donma O, Yorulmaz E, Pekel H, Suyugül N.
    Curr Eye Res; 2002 Jul 02; 25(1):9-16. PubMed ID: 12518238
    [Abstract] [Full Text] [Related]

  • 19. Further studies on the dynamic changes of glutathione and protein-thiol mixed disulfides in H2O2 induced cataract in rat lenses: distributions and effect of aging.
    Lou MF, Xu GT, Cui XL.
    Curr Eye Res; 1995 Oct 02; 14(10):951-8. PubMed ID: 8549161
    [Abstract] [Full Text] [Related]

  • 20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS, Ng AS, Uchida K, Glomb MA, Nagaraj RH.
    Invest Ophthalmol Vis Sci; 2001 May 02; 42(6):1299-304. PubMed ID: 11328743
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.