These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


541 related items for PubMed ID: 25542748

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. A brief perspective on insulin production.
    Steiner DF, Park SY, Støy J, Philipson LH, Bell GI.
    Diabetes Obes Metab; 2009 Nov; 11 Suppl 4():189-96. PubMed ID: 19817801
    [Abstract] [Full Text] [Related]

  • 25. In celebration of a century with insulin - Update of insulin gene mutations in diabetes.
    Støy J, De Franco E, Ye H, Park SY, Bell GI, Hattersley AT.
    Mol Metab; 2021 Oct; 52():101280. PubMed ID: 34174481
    [Abstract] [Full Text] [Related]

  • 26. Chaperone-Driven Degradation of a Misfolded Proinsulin Mutant in Parallel With Restoration of Wild-Type Insulin Secretion.
    Cunningham CN, He K, Arunagiri A, Paton AW, Paton JC, Arvan P, Tsai B.
    Diabetes; 2017 Mar; 66(3):741-753. PubMed ID: 28028074
    [Abstract] [Full Text] [Related]

  • 27. [The molecular mechanism of insulin biosynthesis and mutant insulin gene syndrome].
    Nishi M, Nanjo K.
    Nihon Rinsho; 1994 Oct; 52(10):2519-27. PubMed ID: 7983772
    [Abstract] [Full Text] [Related]

  • 28. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted.
    Park SY, Ye H, Steiner DF, Bell GI.
    Biochem Biophys Res Commun; 2010 Jan 15; 391(3):1449-54. PubMed ID: 20034470
    [Abstract] [Full Text] [Related]

  • 29. Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis.
    Garin I, Edghill EL, Akerman I, Rubio-Cabezas O, Rica I, Locke JM, Maestro MA, Alshaikh A, Bundak R, del Castillo G, Deeb A, Deiss D, Fernandez JM, Godbole K, Hussain K, O'Connell M, Klupa T, Kolouskova S, Mohsin F, Perlman K, Sumnik Z, Rial JM, Ugarte E, Vasanthi T, Neonatal Diabetes International Group, Johnstone K, Flanagan SE, Martínez R, Castaño C, Patch AM, Fernández-Rebollo E, Raile K, Morgan N, Harries LW, Castaño L, Ellard S, Ferrer J, Perez de Nanclares G, Hattersley AT.
    Proc Natl Acad Sci U S A; 2010 Feb 16; 107(7):3105-10. PubMed ID: 20133622
    [Abstract] [Full Text] [Related]

  • 30. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.
    Yuan Q, Tang W, Zhang X, Hinson JA, Liu C, Osei K, Wang J.
    PLoS One; 2012 Feb 16; 7(4):e35098. PubMed ID: 22509386
    [Abstract] [Full Text] [Related]

  • 31. Cells Deploy a Two-Pronged Strategy to Rectify Misfolded Proinsulin Aggregates.
    Cunningham CN, Williams JM, Knupp J, Arunagiri A, Arvan P, Tsai B.
    Mol Cell; 2019 Aug 08; 75(3):442-456.e4. PubMed ID: 31176671
    [Abstract] [Full Text] [Related]

  • 32. In vivo measurement and biological characterisation of the diabetes-associated mutant insulin p.R46Q (GlnB22-insulin).
    Støy J, Olsen J, Park SY, Gregersen S, Hjørringgaard CU, Bell GI.
    Diabetologia; 2017 Aug 08; 60(8):1423-1431. PubMed ID: 28478482
    [Abstract] [Full Text] [Related]

  • 33. Biophysical alteration of the secretory track in β-cells due to molecular overcrowding: the relevance for diabetes.
    Ionescu-Tirgoviste C, Despa F.
    Integr Biol (Camb); 2011 Mar 08; 3(3):173-9. PubMed ID: 21180710
    [Abstract] [Full Text] [Related]

  • 34. Proinsulin folding and trafficking defects trigger a common pathological disturbance of endoplasmic reticulum homeostasis.
    Arunagiri A, Alam M, Haataja L, Draz H, Alasad B, Samy P, Sadique N, Tong Y, Cai Y, Shakeri H, Fantuzzi F, Ibrahim H, Jang I, Sidarala V, Soleimanpour SA, Satin LS, Otonkoski T, Cnop M, Itkin-Ansari P, Kaufman RJ, Liu M, Arvan P.
    Protein Sci; 2024 Apr 08; 33(4):e4949. PubMed ID: 38511500
    [Abstract] [Full Text] [Related]

  • 35. Structural Lessons From the Mutant Proinsulin Syndrome.
    Dhayalan B, Chatterjee D, Chen YS, Weiss MA.
    Front Endocrinol (Lausanne); 2021 Apr 08; 12():754693. PubMed ID: 34659132
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. SDF2L1 interacts with the ER-associated degradation machinery and retards the degradation of mutant proinsulin in pancreatic β-cells.
    Tiwari A, Schuiki I, Zhang L, Allister EM, Wheeler MB, Volchuk A.
    J Cell Sci; 2013 May 01; 126(Pt 9):1962-8. PubMed ID: 23444373
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse.
    Riahi Y, Israeli T, Yeroslaviz R, Chimenez S, Avrahami D, Stolovich-Rain M, Alter I, Sebag M, Polin N, Bernal-Mizrachi E, Dor Y, Cerasi E, Leibowitz G.
    Elife; 2018 Nov 09; 7():. PubMed ID: 30412050
    [Abstract] [Full Text] [Related]

  • 40. The Role of TRAPγ/SSR3 in Preproinsulin Translocation Into the Endoplasmic Reticulum.
    Xu X, Huang Y, Li X, Arvan P, Liu M.
    Diabetes; 2022 Mar 01; 71(3):440-452. PubMed ID: 34857543
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 28.