These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine. Burashnikov A, Di Diego JM, Zygmunt AC, Belardinelli L, Antzelevitch C. Circulation; 2007 Sep 25; 116(13):1449-57. PubMed ID: 17785620 [Abstract] [Full Text] [Related]
3. The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity. Burashnikov A, Barajas-Martinez H, Hu D, Robinson VM, Grunnet M, Antzelevitch C. J Cardiovasc Pharmacol; 2020 Aug 25; 76(2):164-172. PubMed ID: 32453071 [Abstract] [Full Text] [Related]
4. Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade. Aguilar M, Xiong F, Qi XY, Comtois P, Nattel S. Circulation; 2015 Dec 08; 132(23):2203-11. PubMed ID: 26499964 [Abstract] [Full Text] [Related]
10. Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone. Burashnikov A, Belardinelli L, Antzelevitch C. J Pharmacol Exp Ther; 2012 Jan 08; 340(1):161-8. PubMed ID: 22005044 [Abstract] [Full Text] [Related]
11. Can inhibition of IKur promote atrial fibrillation? Burashnikov A, Antzelevitch C. Heart Rhythm; 2008 Sep 08; 5(9):1304-9. PubMed ID: 18774108 [Abstract] [Full Text] [Related]
12. Mechanisms underlying atrial-selective block of sodium channels by Wenxin Keli: Experimental and theoretical analysis. Hu D, Barajas-Martínez H, Burashnikov A, Panama BK, Cordeiro JM, Antzelevitch C. Int J Cardiol; 2016 Mar 15; 207():326-34. PubMed ID: 26820362 [Abstract] [Full Text] [Related]
14. Comparison of the effects of IK,ACh, IKr, and INa block in conscious dogs with atrial fibrillation and on action potentials in remodeled atrial trabeculae. Juhász V, Hornyik T, Benák A, Nagy N, Husti Z, Pap R, Sághy L, Virág L, Varró A, Baczkó I. Can J Physiol Pharmacol; 2018 Jan 15; 96(1):18-25. PubMed ID: 28892643 [Abstract] [Full Text] [Related]
15. In silico optimization of atrial fibrillation-selective sodium channel blocker pharmacodynamics. Aguilar-Shardonofsky M, Vigmond EJ, Nattel S, Comtois P. Biophys J; 2012 Mar 07; 102(5):951-60. PubMed ID: 22404917 [Abstract] [Full Text] [Related]
16. The new antiarrhythmic drug vernakalant: ex vivo study of human atrial tissue from sinus rhythm and chronic atrial fibrillation. Wettwer E, Christ T, Endig S, Rozmaritsa N, Matschke K, Lynch JJ, Pourrier M, Gibson JK, Fedida D, Knaut M, Ravens U. Cardiovasc Res; 2013 Apr 01; 98(1):145-54. PubMed ID: 23341576 [Abstract] [Full Text] [Related]
18. Evaluation of KCB-328, a new IKr blocking antiarrhythmic agent in pacing induced canine atrial fibrillation. Chandra P, Rosen TS, Yeom ZH, Lee K, Kim HY, Danilo P, Rosen MR. Europace; 2004 Sep 01; 6(5):384-91. PubMed ID: 15294262 [Abstract] [Full Text] [Related]
19. Ranolazine effectively suppresses atrial fibrillation in the setting of heart failure. Burashnikov A, Di Diego JM, Barajas-Martínez H, Hu D, Cordeiro JM, Moise NS, Kornreich BG, Belardinelli L, Antzelevitch C. Circ Heart Fail; 2014 Jul 01; 7(4):627-33. PubMed ID: 24874201 [Abstract] [Full Text] [Related]
20. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Front Physiol; 2017 Jul 01; 8():946. PubMed ID: 29218016 [Abstract] [Full Text] [Related] Page: [Next] [New Search]