These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. EEG-based BCI system for decoding finger movements within the same hand. Alazrai R, Alwanni H, Daoud MI. Neurosci Lett; 2019 Apr 17; 698():113-120. PubMed ID: 30630057 [Abstract] [Full Text] [Related]
4. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X, Xu B, Jiang C, Fu Y, Wang Z, Li H, Shi G. J Neural Eng; 2015 Jun 17; 12(3):036004. PubMed ID: 25834118 [Abstract] [Full Text] [Related]
5. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Bascil MS, Tesneli AY, Temurtas F. Australas Phys Eng Sci Med; 2016 Sep 17; 39(3):665-76. PubMed ID: 27376723 [Abstract] [Full Text] [Related]
6. A fresh look at functional link neural network for motor imagery-based brain-computer interface. Hettiarachchi IT, Babaei T, Nguyen T, Lim CP, Nahavandi S. J Neurosci Methods; 2018 Jul 15; 305():28-35. PubMed ID: 29733940 [Abstract] [Full Text] [Related]
7. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals. Kim JH, Bießmann F, Lee SW. IEEE Trans Neural Syst Rehabil Eng; 2015 Sep 15; 23(5):867-76. PubMed ID: 25474811 [Abstract] [Full Text] [Related]
11. Decoding individual finger movements from one hand using human EEG signals. Liao K, Xiao R, Gonzalez J, Ding L. PLoS One; 2014 Sep 15; 9(1):e85192. PubMed ID: 24416360 [Abstract] [Full Text] [Related]
12. A two-stage four-class BCI based on imaginary movements of the left and the right wrist. Vučković A, Sepulveda F. Med Eng Phys; 2012 Sep 15; 34(7):964-71. PubMed ID: 22119365 [Abstract] [Full Text] [Related]
13. 3D hand motion trajectory prediction from EEG mu and beta bandpower. Korik A, Sosnik R, Siddique N, Coyle D. Prog Brain Res; 2016 Sep 15; 228():71-105. PubMed ID: 27590966 [Abstract] [Full Text] [Related]
15. Direction decoding of imagined hand movements using subject-specific features from parietal EEG. Sagila GK, Vinod AP. J Neural Eng; 2022 Sep 06; 19(5):. PubMed ID: 35901779 [Abstract] [Full Text] [Related]
16. Neuromagnetic Decoding of Simultaneous Bilateral Hand Movements for Multidimensional Brain-Machine Interfaces. Belkacem AN, Nishio S, Suzuki T, Ishiguro H, Hirata M. IEEE Trans Neural Syst Rehabil Eng; 2018 Jun 06; 26(6):1301-1310. PubMed ID: 29877855 [Abstract] [Full Text] [Related]
17. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training. Kus R, Valbuena D, Zygierewicz J, Malechka T, Graeser A, Durka P. IEEE Trans Neural Syst Rehabil Eng; 2012 Nov 06; 20(6):823-35. PubMed ID: 23033330 [Abstract] [Full Text] [Related]
18. Using a noninvasive decoding method to classify rhythmic movement imaginations of the arm in two planes. Ofner P, Müller-Putz GR. IEEE Trans Biomed Eng; 2015 Mar 06; 62(3):972-81. PubMed ID: 25494495 [Abstract] [Full Text] [Related]
19. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG. Jochumsen M, Niazi IK, Taylor D, Farina D, Dremstrup K. J Neural Eng; 2015 Oct 06; 12(5):056013. PubMed ID: 26305233 [Abstract] [Full Text] [Related]
20. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces. Tayeb Z, Waniek N, Fedjaev J, Ghaboosi N, Rychly L, Widderich C, Richter C, Braun J, Saveriano M, Cheng G, Conradt J. J Neural Eng; 2018 Dec 06; 15(6):065003. PubMed ID: 30215610 [Abstract] [Full Text] [Related] Page: [Next] [New Search]