These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1050 related items for PubMed ID: 25549856

  • 1. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C, Staines WR.
    Behav Brain Res; 2015 Mar 15; 281():267-75. PubMed ID: 25549856
    [Abstract] [Full Text] [Related]

  • 2. Transient inhibition of the dorsolateral prefrontal cortex disrupts attention-based modulation of tactile stimuli at early stages of somatosensory processing.
    Bolton DA, Staines WR.
    Neuropsychologia; 2011 Jun 15; 49(7):1928-37. PubMed ID: 21439987
    [Abstract] [Full Text] [Related]

  • 3. Age-related loss in attention-based modulation of tactile stimuli at early stages of somatosensory processing.
    Bolton DA, Staines WR.
    Neuropsychologia; 2012 Jun 15; 50(7):1502-13. PubMed ID: 22406692
    [Abstract] [Full Text] [Related]

  • 4. Gating at early cortical processing stages is associated with changes in behavioural performance on a sensory conflict task.
    Adams MS, Popovich C, Staines WR.
    Behav Brain Res; 2017 Jan 15; 317():179-187. PubMed ID: 27641325
    [Abstract] [Full Text] [Related]

  • 5. An ERP investigation on visuotactile interactions in peripersonal and extrapersonal space: evidence for the spatial rule.
    Sambo CF, Forster B.
    J Cogn Neurosci; 2009 Aug 15; 21(8):1550-9. PubMed ID: 18767919
    [Abstract] [Full Text] [Related]

  • 6. Attention-based modulation of tactile stimuli: a comparison between prefrontal lesion patients and healthy age-matched controls.
    Bolton DA, Staines WR.
    Neuropsychologia; 2014 May 15; 57():101-11. PubMed ID: 24650526
    [Abstract] [Full Text] [Related]

  • 7. Modulation of somatosensory event-related potential components in a tactile-visual cross-modal task.
    Ohara S, Lenz FA, Zhou YD.
    Neuroscience; 2006 May 15; 138(4):1387-95. PubMed ID: 16442738
    [Abstract] [Full Text] [Related]

  • 8. Altered tactile spatial attention in the early blind.
    Forster B, Eardley AF, Eimer M.
    Brain Res; 2007 Feb 02; 1131(1):149-54. PubMed ID: 17173872
    [Abstract] [Full Text] [Related]

  • 9. The contribution of the prefrontal cortex to relevancy-based gating of visual and tactile stimuli.
    Adams MS, Andrew D, Staines WR.
    Exp Brain Res; 2019 Oct 02; 237(10):2747-2759. PubMed ID: 31435693
    [Abstract] [Full Text] [Related]

  • 10. Orienting attention to points in time improves stimulus processing both within and across modalities.
    Lange K, Röder B.
    J Cogn Neurosci; 2006 May 02; 18(5):715-29. PubMed ID: 16768372
    [Abstract] [Full Text] [Related]

  • 11. Shift of attention to the body location of distracters is mediated by perceptual load in sustained somatosensory attention.
    Adler J, Giabbiconi CM, Müller MM.
    Biol Psychol; 2009 May 02; 81(2):77-85. PubMed ID: 19428971
    [Abstract] [Full Text] [Related]

  • 12. Crossmodal and intermodal attention modulate event-related brain potentials to tactile and auditory stimuli.
    Hötting K, Rösler F, Röder B.
    Exp Brain Res; 2003 Jan 02; 148(1):26-37. PubMed ID: 12478394
    [Abstract] [Full Text] [Related]

  • 13. ERP investigation of transient attentional selection of single and multiple locations within touch.
    Forster B, Gillmeister H.
    Psychophysiology; 2011 Jun 02; 48(6):788-96. PubMed ID: 20958307
    [Abstract] [Full Text] [Related]

  • 14. Lost in vision: ERP correlates of exogenous tactile attention when engaging in a visual task.
    Jones A, Forster B.
    Neuropsychologia; 2013 Mar 02; 51(4):675-85. PubMed ID: 23340481
    [Abstract] [Full Text] [Related]

  • 15. Modality-independent reduction mechanisms of primary sensory evoked fields in a one-back task.
    Hanke D, Huonker R, Weiss T, Witte OW, Götz T.
    Neuroimage; 2016 Jan 01; 124(Pt A):918-922. PubMed ID: 26436711
    [Abstract] [Full Text] [Related]

  • 16. Crossmodal influences on early somatosensory processing: interaction of vision, touch, and task-relevance.
    Dionne JK, Legon W, Staines WR.
    Exp Brain Res; 2013 May 01; 226(4):503-12. PubMed ID: 23455852
    [Abstract] [Full Text] [Related]

  • 17. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.
    Ku Y, Ohara S, Wang L, Lenz FA, Hsiao SS, Bodner M, Hong B, Zhou YD.
    PLoS One; 2007 Aug 22; 2(8):e771. PubMed ID: 17712419
    [Abstract] [Full Text] [Related]

  • 18. Attentional modulation of the human somatosensory evoked potential in a trial-by-trial spatial cueing and sustained spatial attention task measured with high density 128 channels EEG.
    Zopf R, Giabbiconi CM, Gruber T, Müller MM.
    Brain Res Cogn Brain Res; 2004 Aug 22; 20(3):491-509. PubMed ID: 15268926
    [Abstract] [Full Text] [Related]

  • 19. Modulations of early somatosensory ERP components by transient and sustained spatial attention.
    Eimer M, Forster B.
    Exp Brain Res; 2003 Jul 22; 151(1):24-31. PubMed ID: 12756516
    [Abstract] [Full Text] [Related]

  • 20. Abnormal visual experience during development alters the early stages of visual-tactile integration.
    Niechwiej-Szwedo E, Chin J, Wolfe PJ, Popovich C, Staines WR.
    Behav Brain Res; 2016 May 01; 304():111-9. PubMed ID: 26896697
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.