These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 25550711
21. Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei. Reilly MC, Qin L, Craig JP, Starr TL, Glass NL. Biotechnol Biofuels; 2015; 8():121. PubMed ID: 26288653 [Abstract] [Full Text] [Related]
22. Rational engineering of the Trichoderma reesei RUT-C30 strain into an industrially relevant platform for cellulase production. Fonseca LM, Parreiras LS, Murakami MT. Biotechnol Biofuels; 2020; 13():93. PubMed ID: 32461765 [Abstract] [Full Text] [Related]
23. Global Reprogramming of Gene Transcription in Trichoderma reesei by Overexpressing an Artificial Transcription Factor for Improved Cellulase Production and Identification of Ypr1 as an Associated Regulator. Zhang F, Li JX, Champreda V, Liu CG, Bai FW, Zhao XQ. Front Bioeng Biotechnol; 2020; 8():649. PubMed ID: 32719779 [Abstract] [Full Text] [Related]
27. Enhancement of Cellulase Production in Trichoderma reesei via Disruption of Multiple Protease Genes Identified by Comparative Secretomics. Qian Y, Zhong L, Sun Y, Sun N, Zhang L, Liu W, Qu Y, Zhong Y. Front Microbiol; 2019; 10():2784. PubMed ID: 31849916 [Abstract] [Full Text] [Related]
30. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering. Meng QS, Zhang F, Liu CG, Zhao XQ, Bai FW. Biotechnol Bioeng; 2020 Jun; 117(6):1747-1760. PubMed ID: 32124970 [Abstract] [Full Text] [Related]
35. The micromorphology of Trichoderma reesei analyzed in cultivations on lactose and solid lignocellulosic substrate, and its relationship with cellulase production. Novy V, Schmid M, Eibinger M, Petrasek Z, Nidetzky B. Biotechnol Biofuels; 2016 Jun; 9():169. PubMed ID: 27512503 [Abstract] [Full Text] [Related]
36. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Zhang F, Zhao X, Bai F. Bioresour Technol; 2018 Jan; 247():676-683. PubMed ID: 30060399 [Abstract] [Full Text] [Related]
37. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Shida Y, Furukawa T, Ogasawara W. Biosci Biotechnol Biochem; 2016 Sep; 80(9):1712-29. PubMed ID: 27075508 [Abstract] [Full Text] [Related]
38. A truncated form of the Carbon catabolite repressor 1 increases cellulase production in Trichoderma reesei. Mello-de-Sousa TM, Gorsche R, Rassinger A, Poças-Fonseca MJ, Mach RL, Mach-Aigner AR. Biotechnol Biofuels; 2014 Sep; 7(1):129. PubMed ID: 25342970 [Abstract] [Full Text] [Related]
39. Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15. He R, Li C, Ma L, Zhang D, Chen S. 3 Biotech; 2016 Dec; 6(2):214. PubMed ID: 28330286 [Abstract] [Full Text] [Related]
40. Mechanism of Zn2+ regulation of cellulase production in Trichoderma reesei Rut-C30. Li N, Li J, Chen Y, Shen Y, Wei D, Wang W. Biotechnol Biofuels Bioprod; 2023 Apr 28; 16(1):73. PubMed ID: 37118821 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]