These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1025 related items for PubMed ID: 25558009
1. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres. Sugawa K, Akiyama T, Tanoue Y, Harumoto T, Yanagida S, Yasumori A, Tomita S, Otsuki J. Phys Chem Chem Phys; 2015 Sep 07; 17(33):21182-9. PubMed ID: 25558009 [Abstract] [Full Text] [Related]
2. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
3. Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Yang Y, Zhu J, Zhao J, Weng GJ, Li JJ, Zhao JW. ACS Appl Mater Interfaces; 2019 Jan 23; 11(3):3617-3626. PubMed ID: 30608142 [Abstract] [Full Text] [Related]
4. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole. Liao X, Chen Y, Qin M, Chen Y, Yang L, Zhang H, Tian Y. Talanta; 2013 Dec 15; 117():203-8. PubMed ID: 24209331 [Abstract] [Full Text] [Related]
5. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Langmuir; 2013 Dec 03; 29(48):15076-82. PubMed ID: 24261458 [Abstract] [Full Text] [Related]
6. High-sensitive bioorthogonal SERS tag for live cancer cell imaging by self-assembling core-satellites structure gold-silver nanocomposite. Chen M, Zhang L, Gao M, Zhang X. Talanta; 2017 Sep 01; 172():176-181. PubMed ID: 28602292 [Abstract] [Full Text] [Related]
11. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths. Rycenga M, Hou KK, Cobley CM, Schwartz AG, Camargo PH, Xia Y. Phys Chem Chem Phys; 2009 Jul 28; 11(28):5903-8. PubMed ID: 19588011 [Abstract] [Full Text] [Related]
12. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S. ACS Nano; 2015 Feb 24; 9(2):1895-904. PubMed ID: 25629586 [Abstract] [Full Text] [Related]
13. Fabrication of dense two-dimensional assemblies over vast areas comprising gold(core)-silver(shell) nanoparticles and their surface-enhanced Raman scattering properties. Sugawa K, Tanoue Y, Ube T, Yanagida S, Yamamuro T, Kusaka Y, Ushijima H, Akiyama T. Photochem Photobiol Sci; 2014 Jan 24; 13(1):82-91. PubMed ID: 24220219 [Abstract] [Full Text] [Related]
16. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells. Chang J, Zhang A, Huang Z, Chen Y, Zhang Q, Cui D. Talanta; 2019 Jun 01; 198():45-54. PubMed ID: 30876586 [Abstract] [Full Text] [Related]
18. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. Kim K, Lee HS. J Phys Chem B; 2005 Oct 13; 109(40):18929-34. PubMed ID: 16853437 [Abstract] [Full Text] [Related]
19. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL, Sharma B, Blaber MG, Henry AI, Valley N, Freeman RG, Natan MJ, Schatz GC, Van Duyne RP. J Am Chem Soc; 2013 Jan 09; 135(1):301-8. PubMed ID: 23214430 [Abstract] [Full Text] [Related]