These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
144 related items for PubMed ID: 25558283
1. Increased temperature, but not acidification, enhances fertilization and development in a tropical urchin: potential for adaptation to a tropicalized eastern Australia. Foo SA, Dworjanyn SA, Khatkar MS, Poore AG, Byrne M. Evol Appl; 2014 Dec; 7(10):1226-37. PubMed ID: 25558283 [Abstract] [Full Text] [Related]
4. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Wolfe K, Dworjanyn SA, Byrne M. Glob Chang Biol; 2013 Sep; 19(9):2698-707. PubMed ID: 23649847 [Abstract] [Full Text] [Related]
5. Genetic variation underlies temperature tolerance of embryos in the sea urchin Heliocidaris erythrogramma armigera. Lymbery RA, Evans JP. J Evol Biol; 2013 Oct; 26(10):2271-82. PubMed ID: 23980665 [Abstract] [Full Text] [Related]
6. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming. Byrne M, Ho MA, Koleits L, Price C, King CK, Virtue P, Tilbrook B, Lamare M. Glob Chang Biol; 2013 Jul; 19(7):2264-75. PubMed ID: 23504957 [Abstract] [Full Text] [Related]
8. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification. Gianguzza P, Visconti G, Gianguzza F, Vizzini S, Sarà G, Dupont S. Mar Environ Res; 2014 Feb; 93():70-7. PubMed ID: 23962538 [Abstract] [Full Text] [Related]
10. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. Hardy NA, Byrne M. Mar Environ Res; 2014 Dec; 102():78-87. PubMed ID: 25115741 [Abstract] [Full Text] [Related]
11. Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, Davis AR. Mar Environ Res; 2010 May; 69(4):234-9. PubMed ID: 19913293 [Abstract] [Full Text] [Related]
12. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Karelitz SE, Uthicke S, Foo SA, Barker MF, Byrne M, Pecorino D, Lamare MD. Glob Chang Biol; 2017 Feb; 23(2):657-672. PubMed ID: 27497050 [Abstract] [Full Text] [Related]
13. Ocean warming ameliorates the negative effects of ocean acidification on Paracentrotus lividus larval development and settlement. García E, Clemente S, Hernández JC. Mar Environ Res; 2015 Sep; 110():61-8. PubMed ID: 26275754 [Abstract] [Full Text] [Related]
14. Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 ocean. Kamya PZ, Dworjanyn SA, Hardy N, Mos B, Uthicke S, Byrne M. Glob Chang Biol; 2014 Nov; 20(11):3365-76. PubMed ID: 24615941 [Abstract] [Full Text] [Related]
16. Sea urchins in a high-CO2 world: the influence of acclimation on the immune response to ocean warming and acidification. Brothers CJ, Harianto J, McClintock JB, Byrne M. Proc Biol Sci; 2016 Aug 31; 283(1837):. PubMed ID: 27559066 [Abstract] [Full Text] [Related]