These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 25570838
1. Adaptive-optics optical coherence tomography processing using a graphics processing unit. Shafer BA, Kriske JE, Kocaoglu OP, Turner TL, Liu Z, Lee JJ, Miller DT. Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3877-80. PubMed ID: 25570838 [Abstract] [Full Text] [Related]
2. Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units. Li J, Bloch P, Xu J, Sarunic MV, Shannon L. Appl Opt; 2011 May 01; 50(13):1832-8. PubMed ID: 21532660 [Abstract] [Full Text] [Related]
3. [Applying graphics processing unit in real-time signal processing and visualization of ophthalmic Fourier-domain OCT system]. Liu Q, Li Y, Xu Q, Zhao J, Wang L, Gao Y. Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Jan 01; 37(1):1-5. PubMed ID: 23668032 [Abstract] [Full Text] [Related]
4. Processing and rendering of Fourier domain optical coherence tomography images at a line rate over 524 kHz using a graphics processing unit. Rasakanthan J, Sugden K, Tomlins PH. J Biomed Opt; 2011 Feb 01; 16(2):020505. PubMed ID: 21361661 [Abstract] [Full Text] [Related]
5. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit. Watanabe Y, Itagaki T. J Biomed Opt; 2009 Feb 01; 14(6):060506. PubMed ID: 20059237 [Abstract] [Full Text] [Related]
6. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction. Watanabe Y, Takahashi Y, Numazawa H. J Biomed Opt; 2014 Feb 01; 19(2):021105. PubMed ID: 23846119 [Abstract] [Full Text] [Related]
7. Parallelized multi-graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy. Tankam P, Santhanam AP, Lee KS, Won J, Canavesi C, Rolland JP. J Biomed Opt; 2014 Jul 01; 19(7):71410. PubMed ID: 24695868 [Abstract] [Full Text] [Related]
8. Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit. Van der Jeught S, Bradu A, Podoleanu AG. J Biomed Opt; 2010 Jul 01; 15(3):030511. PubMed ID: 20614994 [Abstract] [Full Text] [Related]
9. Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit. Watanabe Y. J Biomed Opt; 2012 May 01; 17(5):050503. PubMed ID: 22612118 [Abstract] [Full Text] [Related]
10. Four-dimensional structural and Doppler optical coherence tomography imaging on graphics processing units. Sylwestrzak M, Szlag D, Szkulmowski M, Gorczynska I, Bukowska D, Wojtkowski M, Targowski P. J Biomed Opt; 2012 Oct 01; 17(10):100502. PubMed ID: 23042477 [Abstract] [Full Text] [Related]
11. Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering. Jian Y, Wong K, Sarunic MV. J Biomed Opt; 2013 Feb 01; 18(2):26002. PubMed ID: 23377003 [Abstract] [Full Text] [Related]
12. Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units. Watanabe Y, Maeno S, Aoshima K, Hasegawa H, Koseki H. Appl Opt; 2010 Sep 01; 49(25):4756-62. PubMed ID: 20820218 [Abstract] [Full Text] [Related]
13. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system. Bradu A, Kapinchev K, Barnes F, Podoleanu A. J Biomed Opt; 2015 Jul 01; 20(7):76008. PubMed ID: 26198418 [Abstract] [Full Text] [Related]
14. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Alerstam E, Svensson T, Andersson-Engels S. J Biomed Opt; 2008 Jul 01; 13(6):060504. PubMed ID: 19123645 [Abstract] [Full Text] [Related]
15. Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Werkmeister RM, Dragostinoff N, Pircher M, Götzinger E, Hitzenberger CK, Leitgeb RA, Schmetterer L. Opt Lett; 2008 Dec 15; 33(24):2967-9. PubMed ID: 19079508 [Abstract] [Full Text] [Related]
16. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit. Xu J, Wong K, Jian Y, Sarunic MV. J Biomed Opt; 2014 Feb 15; 19(2):026001. PubMed ID: 24503636 [Abstract] [Full Text] [Related]
17. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography. Camino A, Ng R, Huang J, Guo Y, Ni S, Jia Y, Huang D, Jian Y. Opt Lett; 2020 May 01; 45(9):2612-2615. PubMed ID: 32356829 [Abstract] [Full Text] [Related]
18. THREE-DIMENSIONAL ANALYSIS OF RETINAL MICROANEURYSMS WITH ADAPTIVE OPTICS OPTICAL COHERENCE TOMOGRAPHY. Karst SG, Salas M, Hafner J, Scholda C, Vogl WD, Drexler W, Pircher M, Schmidt-Erfurth U. Retina; 2019 Mar 01; 39(3):465-472. PubMed ID: 29360686 [Abstract] [Full Text] [Related]
19. Pixelation effect removal from fiber bundle probe based optical coherence tomography imaging. Han JH, Lee J, Kang JU. Opt Express; 2010 Mar 29; 18(7):7427-39. PubMed ID: 20389766 [Abstract] [Full Text] [Related]