These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 25570865

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke.
    Contreras-Vidal JL, Bortole M, Zhu F, Nathan K, Venkatakrishnan A, Francisco GE, Soto R, Pons JL.
    Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC, White M, White HSF, Vanicek N.
    Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685
    [Abstract] [Full Text] [Related]

  • 6. EEG-Based Detection of Starting and Stopping During Gait Cycle.
    Hortal E, Úbeda A, Iáñez E, Azorín JM, Fernández E.
    Int J Neural Syst; 2016 Nov; 26(7):1650029. PubMed ID: 27354191
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton.
    Contreras-Vidal JL, Grossman RG.
    Annu Int Conf IEEE Eng Med Biol Soc; 2013 Nov; 2013():1579-82. PubMed ID: 24110003
    [Abstract] [Full Text] [Related]

  • 10. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation.
    Louie DR, Mortenson WB, Durocher M, Teasell R, Yao J, Eng JJ.
    BMC Neurol; 2020 Jan 28; 20(1):35. PubMed ID: 31992219
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K, Liu H, Zhang D.
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov 28; 25(11):2054-2066. PubMed ID: 28504943
    [Abstract] [Full Text] [Related]

  • 16. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T, Guigon E, Roby-Brami A, Jarrassé N.
    J Neuroeng Rehabil; 2017 Jun 12; 14(1):55. PubMed ID: 28606179
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.