These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, Bratley JV, Kung TA, Cederna PS, Kemp SWP. J Neural Eng; 2021 Aug 20; 18(4):. PubMed ID: 34359056 [Abstract] [Full Text] [Related]
3. Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats. Ursu D, Nedic A, Urbanchek M, Cederna P, Gillespie RB. J Neuroeng Rehabil; 2017 Apr 24; 14(1):33. PubMed ID: 28438166 [Abstract] [Full Text] [Related]
4. Regenerative peripheral nerve interfaces for real-time, proportional control of a Neuroprosthetic hand. Frost CM, Ursu DC, Flattery SM, Nedic A, Hassett CA, Moon JD, Buchanan PJ, Brent Gillespie R, Kung TA, Kemp SWP, Cederna PS, Urbanchek MG. J Neuroeng Rehabil; 2018 Nov 20; 15(1):108. PubMed ID: 30458876 [Abstract] [Full Text] [Related]
5. Compartmental fasciotomy and isolating a muscle from neighboring muscles interfere with myofascial force transmission within the rat anterior crural compartment. Huijing PA, Maas H, Baan GC. J Morphol; 2003 Jun 20; 256(3):306-21. PubMed ID: 12655613 [Abstract] [Full Text] [Related]
6. Intermuscular interaction via myofascial force transmission: effects of tibialis anterior and extensor hallucis longus length on force transmission from rat extensor digitorum longus muscle. Maas H, Baan GC, Huijing PA. J Biomech; 2001 Jul 20; 34(7):927-40. PubMed ID: 11410176 [Abstract] [Full Text] [Related]
7. In vivo characterization of regenerative peripheral nerve interface function. Ursu DC, Urbanchek MG, Nedic A, Cederna PS, Gillespie RB. J Neural Eng; 2016 Apr 20; 13(2):026012. PubMed ID: 26859115 [Abstract] [Full Text] [Related]
8. Myofascial force transmission between antagonistic rat lower limb muscles: effects of single muscle or muscle group lengthening. Meijer HJ, Rijkelijkhuizen JM, Huijing PA. J Electromyogr Kinesiol; 2007 Dec 20; 17(6):698-707. PubMed ID: 17382560 [Abstract] [Full Text] [Related]
9. Intermuscular interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Maas H, Meijer HJ, Huijing PA. Cells Tissues Organs; 2005 Dec 20; 181(1):38-50. PubMed ID: 16439817 [Abstract] [Full Text] [Related]
10. Electrically stimulated signals from a long-term Regenerative Peripheral Nerve Interface. Langhals NB, Woo SL, Moon JD, Larson JV, Leach MK, Cederna PS, Urbanchek MG. Annu Int Conf IEEE Eng Med Biol Soc; 2014 Dec 20; 2014():1989-92. PubMed ID: 25570372 [Abstract] [Full Text] [Related]
12. Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat. Leahy JC, Durkovic RG. J Neurophysiol; 1991 Aug 20; 66(2):460-72. PubMed ID: 1774582 [Abstract] [Full Text] [Related]
13. Myofascial force transmission in dynamic muscle conditions: effects of dynamic shortening of a single head of multi-tendoned rat extensor digitorum longus muscle. Maas H, Huijing PA. Eur J Appl Physiol; 2005 Aug 20; 94(5-6):584-92. PubMed ID: 15952026 [Abstract] [Full Text] [Related]
14. Regenerative peripheral nerve interface viability and signal transduction with an implanted electrode. Kung TA, Langhals NB, Martin DC, Johnson PJ, Cederna PS, Urbanchek MG. Plast Reconstr Surg; 2014 Jun 20; 133(6):1380-1394. PubMed ID: 24867721 [Abstract] [Full Text] [Related]
15. Myofascial force transmission also occurs between antagonistic muscles located within opposite compartments of the rat lower hind limb. Rijkelijkhuizen JM, Meijer HJ, Baan GC, Huijing PA. J Electromyogr Kinesiol; 2007 Dec 20; 17(6):690-7. PubMed ID: 17383201 [Abstract] [Full Text] [Related]
16. Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG. J Neurophysiol; 1996 Mar 20; 75(3):1126-37. PubMed ID: 8867123 [Abstract] [Full Text] [Related]
17. Myofascial force transmission causes interaction between adjacent muscles and connective tissue: effects of blunt dissection and compartmental fasciotomy on length force characteristics of rat extensor digitorum longus muscle. Huijing PA, Baan GC. Arch Physiol Biochem; 2001 Apr 20; 109(2):97-109. PubMed ID: 11780782 [Abstract] [Full Text] [Related]
18. Regenerative peripheral nerve interface free muscle graft mass and function. Hu Y, Ursu DC, Sohasky RA, Sando IC, Ambani SLW, French ZP, Mays EA, Nedic A, Moon JD, Kung TA, Cederna PS, Kemp SWP, Urbanchek MG. Muscle Nerve; 2021 Mar 20; 63(3):421-429. PubMed ID: 33290586 [Abstract] [Full Text] [Related]
19. Controlled intermittent shortening contractions of a muscle-tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL. Maas H, Lehti TM, Tiihonen V, Komulainen J, Huijing PA. J Muscle Res Cell Motil; 2005 Mar 20; 26(4-5):259-73. PubMed ID: 16322914 [Abstract] [Full Text] [Related]
20. Extramuscular myofascial force transmission also occurs between synergistic muscles and antagonistic muscles. Huijing PA, van de Langenberg RW, Meesters JJ, Baan GC. J Electromyogr Kinesiol; 2007 Dec 20; 17(6):680-9. PubMed ID: 17383898 [Abstract] [Full Text] [Related] Page: [Next] [New Search]