These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
479 related items for PubMed ID: 25574041
1. Analysis of retinal nonperfusion using depth-integrated optical coherence tomography images in eyes with branch retinal vein occlusion. Sakimoto S, Gomi F, Sakaguchi H, Akiba M, Kamei M, Nishida K. Invest Ophthalmol Vis Sci; 2015 Jan 08; 56(1):640-6. PubMed ID: 25574041 [Abstract] [Full Text] [Related]
2. Area of peripheral retinal nonperfusion and treatment response in branch and central retinal vein occlusion. Singer M, Tan CS, Bell D, Sadda SR. Retina; 2014 Sep 08; 34(9):1736-42. PubMed ID: 24732695 [Abstract] [Full Text] [Related]
3. En face swept-source optical coherence tomography detecting thinning of inner retinal layers as an indicator of capillary nonperfusion. Imai A, Toriyama Y, Iesato Y, Hirano T, Murata T. Eur J Ophthalmol; 2015 Sep 08; 25(2):153-8. PubMed ID: 25264117 [Abstract] [Full Text] [Related]
4. Changes in areas of capillary nonperfusion after intravitreal injection of bevacizumab in eyes with branch retinal vein occlusion. Terui T, Kondo M, Sugita T, Ito Y, Kondo N, Ota I, Miyake K, Terasaki H. Retina; 2011 Jun 08; 31(6):1068-74. PubMed ID: 21451440 [Abstract] [Full Text] [Related]
5. Evaluation of retinal nonperfusion in branch retinal vein occlusion using wide-field optical coherence tomography angiography. Shiraki A, Sakimoto S, Tsuboi K, Wakabayashi T, Hara C, Fukushima Y, Sayanagi K, Nishida K, Sakaguchi H, Nishida K. Acta Ophthalmol; 2019 Sep 08; 97(6):e913-e918. PubMed ID: 30900381 [Abstract] [Full Text] [Related]
6. Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography. Kuehlewein L, An L, Durbin MK, Sadda SR. Ophthalmic Surg Lasers Imaging Retina; 2015 Feb 08; 46(2):249-52. PubMed ID: 25707052 [Abstract] [Full Text] [Related]
7. Prospective study of intravitreal triamcinolone acetonide versus bevacizumab for macular edema secondary to central retinal vein occlusion. Ding X, Li J, Hu X, Yu S, Pan J, Tang S. Retina; 2011 May 08; 31(5):838-45. PubMed ID: 21293319 [Abstract] [Full Text] [Related]
8. Peripheral areas of nonperfusion in treated central retinal vein occlusion as imaged by wide-field fluorescein angiography. Spaide RF. Retina; 2011 May 08; 31(5):829-37. PubMed ID: 21487338 [Abstract] [Full Text] [Related]
9. Intravitreal ranibizumab for macular oedema secondary to retinal vein occlusion: a retrospective study of 34 eyes. Puche N, Glacet A, Mimoun G, Zourdani A, Coscas G, Soubrane G. Acta Ophthalmol; 2012 Jun 08; 90(4):357-61. PubMed ID: 20602625 [Abstract] [Full Text] [Related]
10. Highly reflective line in optical coherence tomography images of eyes with macular edema associated with branch retinal vein occlusion. Hasegawa T, Masuda N, Ogata N. Am J Ophthalmol; 2015 May 08; 159(5):925-33.e1. PubMed ID: 25644536 [Abstract] [Full Text] [Related]
11. Progressive retinal nonperfusion in ischemic central retinal vein occlusion. Wykoff CC, Brown DM, Croft DE, Major JC, Wong TP. Retina; 2015 Jan 08; 35(1):43-7. PubMed ID: 25102193 [Abstract] [Full Text] [Related]
12. Comparison of intravitreal bevacizumab upload followed by a dexamethasone implant versus dexamethasone implant monotherapy for retinal vein occlusion with macular edema. Mayer WJ, Remy M, Wolf A, Kook D, Kampik A, Ulbig M, Reznicek L, Haritoglou C. Ophthalmologica; 2012 Jan 08; 228(2):110-6. PubMed ID: 22739239 [Abstract] [Full Text] [Related]
13. Choroidal volume in branch retinal vein occlusion before and after intravitreal anti-VEGF injection. Chung YK, Shin JA, Park YH. Retina; 2015 Jun 08; 35(6):1234-9. PubMed ID: 25574783 [Abstract] [Full Text] [Related]
14. Extended field imaging using swept-source optical coherence tomography angiography in retinal vein occlusion. Kakihara S, Hirano T, Iesato Y, Imai A, Toriyama Y, Murata T. Jpn J Ophthalmol; 2018 May 08; 62(3):274-279. PubMed ID: 29594610 [Abstract] [Full Text] [Related]
15. Intravitreal bevacizumab and cytokine levels in major and macular branch retinal vein occlusion. Lim JW. Ophthalmologica; 2011 May 08; 225(3):150-4. PubMed ID: 21150231 [Abstract] [Full Text] [Related]
16. Long-term outcomes in ranibizumab-treated patients with retinal vein occlusion; the role of progression of retinal nonperfusion. Sophie R, Hafiz G, Scott AW, Zimmer-Galler I, Nguyen QD, Ying H, Do DV, Solomon S, Sodhi A, Gehlbach P, Duh E, Baranano D, Campochiaro PA. Am J Ophthalmol; 2013 Oct 08; 156(4):693-705. PubMed ID: 24053892 [Abstract] [Full Text] [Related]
17. Collateral Vessel Development in Central and Branch Retinal Vein Occlusions Are Associated With Worse Visual and Anatomic Outcomes. Arrigo A, Aragona E, Lattanzio R, Scalia G, Bandello F, Parodi MB. Invest Ophthalmol Vis Sci; 2021 Nov 01; 62(14):1. PubMed ID: 34724540 [Abstract] [Full Text] [Related]
18. Effect of combination therapy with bevacizumab and dexamethasone intravitreal implant in patients with retinal vein occlusion. Singer MA, Bell DJ, Woods P, Pollard J, Boord T, Herro A, Porbandarwalla S. Retina; 2012 Jul 01; 32(7):1289-94. PubMed ID: 22466480 [Abstract] [Full Text] [Related]
19. Visual improvement in central retinal vein occlusion (CRVO) following intravitreal injections of bevacizumab (Avastin(®) ). Algvere PV, Von Wendt G, Gudmundsson J, Seregard S, Kvanta A. Acta Ophthalmol; 2010 Dec 01; 88(8):836-41. PubMed ID: 19900206 [Abstract] [Full Text] [Related]
20. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD. Ophthalmology; 2010 Apr 01; 117(4):780-4. PubMed ID: 20045570 [Abstract] [Full Text] [Related] Page: [Next] [New Search]