These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


662 related items for PubMed ID: 25578700

  • 1. Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering.
    Fiorilli S, Baino F, Cauda V, Crepaldi M, Vitale-Brovarone C, Demarchi D, Onida B.
    J Mater Sci Mater Med; 2015 Jan; 26(1):5346. PubMed ID: 25578700
    [Abstract] [Full Text] [Related]

  • 2. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells.
    Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F.
    J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654
    [Abstract] [Full Text] [Related]

  • 3. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering.
    Liu X, Huang W, Fu H, Yao A, Wang D, Pan H, Lu WW.
    J Mater Sci Mater Med; 2009 Jan; 20(1):365-72. PubMed ID: 18807266
    [Abstract] [Full Text] [Related]

  • 4. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.
    Lin D, Yang K, Tang W, Liu Y, Yuan Y, Liu C.
    Colloids Surf B Biointerfaces; 2015 Jul 01; 131():1-11. PubMed ID: 25935647
    [Abstract] [Full Text] [Related]

  • 5. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications.
    Dittler ML, Unalan I, Grünewald A, Beltrán AM, Grillo CA, Destch R, Gonzalez MC, Boccaccini AR.
    Colloids Surf B Biointerfaces; 2019 Oct 01; 182():110346. PubMed ID: 31325780
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. 45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering.
    Chen QZ, Thompson ID, Boccaccini AR.
    Biomaterials; 2006 Apr 01; 27(11):2414-25. PubMed ID: 16336997
    [Abstract] [Full Text] [Related]

  • 8. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics.
    Yun HS, Kim SH, Khang D, Choi J, Kim HH, Kang M.
    Int J Nanomedicine; 2011 Apr 01; 6():2521-31. PubMed ID: 22072886
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering.
    Chlanda A, Oberbek P, Heljak M, Kijeńska-Gawrońska E, Bolek T, Gloc M, John Ł, Janeta M, Woźniak MJ.
    Mater Sci Eng C Mater Biol Appl; 2019 Jan 01; 94():516-523. PubMed ID: 30423736
    [Abstract] [Full Text] [Related]

  • 11. Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly(D,L-lactic acid) coatings.
    Mantsos T, Chatzistavrou X, Roether JA, Hupa L, Arstila H, Boccaccini AR.
    Biomed Mater; 2009 Oct 01; 4(5):055002. PubMed ID: 19776493
    [Abstract] [Full Text] [Related]

  • 12. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds.
    Zhang H, Ye XJ, Li JS.
    Biomed Mater; 2009 Aug 01; 4(4):045007. PubMed ID: 19605959
    [Abstract] [Full Text] [Related]

  • 13. Optimising bioactive glass scaffolds for bone tissue engineering.
    Jones JR, Ehrenfried LM, Hench LL.
    Biomaterials; 2006 Mar 01; 27(7):964-73. PubMed ID: 16102812
    [Abstract] [Full Text] [Related]

  • 14. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.
    Fu Q, Rahaman MN, Fu H, Liu X.
    J Biomed Mater Res A; 2010 Oct 01; 95(1):164-71. PubMed ID: 20544804
    [Abstract] [Full Text] [Related]

  • 15. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO2-CaO-Na2O-P2O5 nano bioactive glass ceramics.
    Mubina MSK, Shailajha S, Sankaranarayanan R, Saranya L.
    J Mech Behav Biomed Mater; 2019 Dec 01; 100():103379. PubMed ID: 31398691
    [Abstract] [Full Text] [Related]

  • 16. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.
    Chen Q, Garcia RP, Munoz J, Pérez de Larraya U, Garmendia N, Yao Q, Boccaccini AR.
    ACS Appl Mater Interfaces; 2015 Nov 11; 7(44):24715-25. PubMed ID: 26460819
    [Abstract] [Full Text] [Related]

  • 17. Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes.
    Vitale-Brovarone C, Vernè E, Bosetti M, Appendino P, Cannas M.
    J Mater Sci Mater Med; 2005 Oct 11; 16(10):909-17. PubMed ID: 16167099
    [Abstract] [Full Text] [Related]

  • 18. Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering.
    Wu C, Zhou Y, Lin C, Chang J, Xiao Y.
    Acta Biomater; 2012 Oct 11; 8(10):3805-15. PubMed ID: 22750735
    [Abstract] [Full Text] [Related]

  • 19. Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering.
    Elkhouly H, Mamdouh W, El-Korashy DI.
    J Mater Sci Mater Med; 2021 Aug 28; 32(9):111. PubMed ID: 34453628
    [Abstract] [Full Text] [Related]

  • 20. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F, Ferraris M, Bretcanu O, Verné E, Vitale-Brovarone C.
    J Biomater Appl; 2013 Mar 28; 27(7):872-90. PubMed ID: 22207602
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.