These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


558 related items for PubMed ID: 25586067

  • 1. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration.
    Przekora A, Ginalska G.
    Biomed Mater; 2015 Jan 13; 10(1):015009. PubMed ID: 25586067
    [Abstract] [Full Text] [Related]

  • 2. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application.
    Przekora A, Palka K, Ginalska G.
    J Biotechnol; 2014 Jul 20; 182-183():46-53. PubMed ID: 24815684
    [Abstract] [Full Text] [Related]

  • 3. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.
    Przekora A, Ginalska G.
    Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():225-233. PubMed ID: 28183603
    [Abstract] [Full Text] [Related]

  • 4. Addition of 1,3-β-D-glucan to chitosan-based composites enhances osteoblast adhesion, growth, and proliferation.
    Przekora A, Ginalska G.
    Int J Biol Macromol; 2014 Sep 01; 70():474-81. PubMed ID: 25064557
    [Abstract] [Full Text] [Related]

  • 5. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds].
    Kong LJ, Ao Q, Xi J, Zhang L, Gong YD, Zhao NM, Zhang XF.
    Sheng Wu Gong Cheng Xue Bao; 2007 Mar 01; 23(2):262-7. PubMed ID: 17460899
    [Abstract] [Full Text] [Related]

  • 6. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.
    Baylan N, Bhat S, Ditto M, Lawrence JG, Lecka-Czernik B, Yildirim-Ayan E.
    Biomed Mater; 2013 Aug 01; 8(4):045011. PubMed ID: 23804651
    [Abstract] [Full Text] [Related]

  • 7. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells.
    Kazimierczak P, Benko A, Nocun M, Przekora A.
    Int J Nanomedicine; 2019 Aug 01; 14():6615-6630. PubMed ID: 31695360
    [Abstract] [Full Text] [Related]

  • 8. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL, Chang CH, Huang CC, Kao WM, Liu WC, Liu HW.
    Biomed Mater Eng; 2014 Aug 01; 24(1):979-85. PubMed ID: 24211987
    [Abstract] [Full Text] [Related]

  • 9. Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts.
    Heinemann C, Heinemann S, Bernhardt A, Worch H, Hanke T.
    Biomacromolecules; 2008 Oct 01; 9(10):2913-20. PubMed ID: 18771318
    [Abstract] [Full Text] [Related]

  • 10. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM.
    J Tissue Eng Regen Med; 2011 Jun 01; 5(6):e126-35. PubMed ID: 21312338
    [Abstract] [Full Text] [Related]

  • 11. Key role of the expression of bone morphogenetic proteins in increasing the osteogenic activity of osteoblast-like cells exposed to shock waves and seeded on bioactive glass-ceramic scaffolds for bone tissue engineering.
    Muzio G, Martinasso G, Baino F, Frairia R, Vitale-Brovarone C, Canuto RA.
    J Biomater Appl; 2014 Nov 01; 29(5):728-36. PubMed ID: 24994880
    [Abstract] [Full Text] [Related]

  • 12. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering.
    Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, Lu T.
    Life Sci; 2016 Mar 01; 148():139-44. PubMed ID: 26874032
    [Abstract] [Full Text] [Related]

  • 13. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.
    Sun H, Wu C, Dai K, Chang J, Tang T.
    Biomaterials; 2006 Nov 01; 27(33):5651-7. PubMed ID: 16904740
    [Abstract] [Full Text] [Related]

  • 14. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption.
    Przekora A, Benko A, Blazewicz M, Ginalska G.
    Biomed Mater; 2016 Jul 07; 11(4):045001. PubMed ID: 27388048
    [Abstract] [Full Text] [Related]

  • 15. Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells.
    Akman AC, Seda Tiğli R, Gümüşderelioğlu M, Nohutcu RM.
    Artif Organs; 2010 Jan 07; 34(1):65-74. PubMed ID: 19821811
    [Abstract] [Full Text] [Related]

  • 16. Evaluating the feasibility of utilizing the small molecule phenamil as a novel biofactor for bone regenerative engineering.
    Lo KW, Ulery BD, Kan HM, Ashe KM, Laurencin CT.
    J Tissue Eng Regen Med; 2014 Sep 07; 8(9):728-36. PubMed ID: 22815259
    [Abstract] [Full Text] [Related]

  • 17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL.
    Biomaterials; 2006 Dec 07; 27(36):6123-37. PubMed ID: 16945410
    [Abstract] [Full Text] [Related]

  • 18. A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration.
    Roohani-Esfahani SI, No YJ, Lu Z, Ng PY, Chen Y, Shi J, Pavlos NJ, Zreiqat H.
    Biomed Mater; 2016 Jun 15; 11(3):035018. PubMed ID: 27305523
    [Abstract] [Full Text] [Related]

  • 19. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges.
    Arpornmaeklong P, Suwatwirote N, Pripatnanont P, Oungbho K.
    Int J Oral Maxillofac Surg; 2007 Apr 15; 36(4):328-37. PubMed ID: 17223012
    [Abstract] [Full Text] [Related]

  • 20. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T, Khan Y, Nair LS, Abdel-Fattah WI, Laurencin CT.
    J Biomed Mater Res A; 2010 Jun 01; 93(3):1193-208. PubMed ID: 19777575
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.