These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Kutzner I, Bender A, Dymke J, Duda G, von Roth P, Bergmann G. Bone Joint J; 2017 Jun; 99-B(6):779-787. PubMed ID: 28566397 [Abstract] [Full Text] [Related]
5. A subject-specific musculoskeletal model to predict the tibiofemoral contact forces during daily living activities. Zhang L, Liu G, Yan Y, Han B, Li H, Ma J, Wang X. Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):972-985. PubMed ID: 35852103 [Abstract] [Full Text] [Related]
6. Sensitivity of medial and lateral knee contact force predictions to frontal plane alignment and contact locations. Saliba CM, Brandon SCE, Deluzio KJ. J Biomech; 2017 May 24; 57():125-130. PubMed ID: 28342531 [Abstract] [Full Text] [Related]
9. Immediate effects of valgus knee bracing on tibiofemoral contact forces and knee muscle forces. Hall M, Diamond LE, Lenton GK, Pizzolato C, Saxby DJ. Gait Posture; 2019 Feb 24; 68():55-62. PubMed ID: 30458429 [Abstract] [Full Text] [Related]
10. Effects of a valgus unloader brace in the medial meniscectomized knee joint: a biomechanical study. Shriram D, Yamako G, Chosa E, Lee YHD, Subburaj K. J Orthop Surg Res; 2019 Feb 12; 14(1):44. PubMed ID: 30755226 [Abstract] [Full Text] [Related]
11. Modulating tibiofemoral contact force in the sheep hind limb via treadmill walking: Predictions from an opensim musculoskeletal model. Lerner ZF, Gadomski BC, Ipson AK, Haussler KK, Puttlitz CM, Browning RC. J Orthop Res; 2015 Aug 12; 33(8):1128-33. PubMed ID: 25721318 [Abstract] [Full Text] [Related]
13. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling. Peng Y, Zhang Z, Gao Y, Chen Z, Xin H, Zhang Q, Fan X, Jin Z. Med Eng Phys; 2018 Feb 12; 52():31-40. PubMed ID: 29269224 [Abstract] [Full Text] [Related]
14. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? limb and joint line alignment after kinematically aligned total knee arthroplasty. Shelton TJ, Nedopil AJ, Howell SM, Hull ML. Bone Joint J; 2017 Oct 12; 99-B(10):1319-1328. PubMed ID: 28963153 [Abstract] [Full Text] [Related]
15. Large medial proximal tibial angles cause excessively medial tibiofemoral contact forces and abnormal knee kinematics following open-wedge high tibial osteotomy. Kuriyama S, Watanabe M, Nakamura S, Nishitani K, Tanaka Y, Sekiguchi K, Ito H, Matsuda S. Clin Biomech (Bristol); 2020 Dec 12; 80():105190. PubMed ID: 33053468 [Abstract] [Full Text] [Related]
16. Increases in tibial force imbalance but not changes in tibiofemoral laxities are caused by varus-valgus malalignment of the femoral component in kinematically aligned TKA. Riley J, Roth JD, Howell SM, Hull ML. Knee Surg Sports Traumatol Arthrosc; 2018 Nov 12; 26(11):3238-3248. PubMed ID: 29380010 [Abstract] [Full Text] [Related]
19. The effect of the frontal plane tibiofemoral angle and varus knee moment on the contact stress and strain at the knee cartilage. Yang NH, Canavan PK, Nayeb-Hashemi H. J Appl Biomech; 2010 Nov 12; 26(4):432-43. PubMed ID: 21245503 [Abstract] [Full Text] [Related]
20. Influence of limb alignment on mediolateral loading in total knee replacement: in vivo measurements in five patients. Halder A, Kutzner I, Graichen F, Heinlein B, Beier A, Bergmann G. J Bone Joint Surg Am; 2012 Jun 06; 94(11):1023-9. PubMed ID: 22637208 [Abstract] [Full Text] [Related] Page: [Next] [New Search]