These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Solar fuels via artificial photosynthesis. Gust D, Moore TA, Moore AL. Acc Chem Res; 2009 Dec 21; 42(12):1890-8. PubMed ID: 19902921 [Abstract] [Full Text] [Related]
4. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress. Hoang VC, Bui TS, Nguyen HTD, Hoang TT, Rahman G, Le QV, Nguyen DLT. Environ Res; 2021 Nov 21; 202():111781. PubMed ID: 34333011 [Abstract] [Full Text] [Related]
5. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex. Thoi VS, Kornienko N, Margarit CG, Yang P, Chang CJ. J Am Chem Soc; 2013 Sep 25; 135(38):14413-24. PubMed ID: 24033186 [Abstract] [Full Text] [Related]
7. Towards solar fuels from water and CO2. Centi G, Perathoner S. ChemSusChem; 2010 Feb 22; 3(2):195-208. PubMed ID: 20155779 [Abstract] [Full Text] [Related]
8. Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. Bensaid S, Centi G, Garrone E, Perathoner S, Saracco G. ChemSusChem; 2012 Mar 12; 5(3):500-21. PubMed ID: 22431486 [Abstract] [Full Text] [Related]
9. Molecular Catalyst Immobilized Photocathodes for Water/Proton and Carbon Dioxide Reduction. Tian H. ChemSusChem; 2015 Nov 12; 8(22):3746-59. PubMed ID: 26437747 [Abstract] [Full Text] [Related]
10. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes. Zhang L, Wang Z, Mehio N, Jin X, Dai S. ChemSusChem; 2016 Mar 08; 9(5):428-32. PubMed ID: 26822587 [Abstract] [Full Text] [Related]
11. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4. Li W, Seredych M, Rodríguez-Castellón E, Bandosz TJ. ChemSusChem; 2016 Mar 21; 9(6):606-16. PubMed ID: 26835880 [Abstract] [Full Text] [Related]
12. Hybrid bioinorganic approach to solar-to-chemical conversion. Nichols EM, Gallagher JJ, Liu C, Su Y, Resasco J, Yu Y, Sun Y, Yang P, Chang MC, Chang CJ. Proc Natl Acad Sci U S A; 2015 Sep 15; 112(37):11461-6. PubMed ID: 26305947 [Abstract] [Full Text] [Related]
13. Spatio-temporal resolution of primary processes of photosynthesis. Junge W. Faraday Discuss; 2015 Sep 15; 177():547-62. PubMed ID: 25824647 [Abstract] [Full Text] [Related]
15. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis. Pang H, Masuda T, Ye J. Chem Asian J; 2018 Jan 18; 13(2):127-142. PubMed ID: 29193762 [Abstract] [Full Text] [Related]
16. Solar Panel Technologies for Light-to-Chemical Conversion. Andrei V, Wang Q, Uekert T, Bhattacharjee S, Reisner E. Acc Chem Res; 2022 Dec 06; 55(23):3376-3386. PubMed ID: 36395337 [Abstract] [Full Text] [Related]
17. Efficient Photosynthesis of Value-Added Chemicals by Electrocarboxylation of Bromobenzene with CO2 Using a Solar Energy Conversion Device. Zhang Y, Gao C, Ren H, Luo P, Wan Q, Zhou H, Chen B, Zhang X. Int J Mol Sci; 2024 Oct 01; 25(19):. PubMed ID: 39408936 [Abstract] [Full Text] [Related]
18. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuel-forming electrocatalysis. Heidary N, Harris TGAA, Ly KH, Kornienko N. Physiol Plant; 2019 May 01; 166(1):460-471. PubMed ID: 30706497 [Abstract] [Full Text] [Related]
19. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals. Highfield J. Molecules; 2015 Apr 15; 20(4):6739-93. PubMed ID: 25884553 [Abstract] [Full Text] [Related]
20. Electrochemical reduction of CO2 and N2 to synthesize urea on metal-nitrogen-doped carbon catalysts: a theoretical study. Zhang Z, Guo L. Dalton Trans; 2021 Aug 28; 50(32):11158-11166. PubMed ID: 34328160 [Abstract] [Full Text] [Related] Page: [Next] [New Search]