These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1145 related items for PubMed ID: 25600057

  • 1. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M, Mahdioun SH, Jaryani P, Yazdani M.
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [Abstract] [Full Text] [Related]

  • 2. Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients.
    Iwamoto Y, Imura T, Suzukawa T, Fukuyama H, Ishii T, Taki S, Imada N, Shibukawa M, Inagawa T, Araki H, Araki O.
    J Stroke Cerebrovasc Dis; 2019 Jul; 28(7):2018-2025. PubMed ID: 31047819
    [Abstract] [Full Text] [Related]

  • 3. Exerciser for rehabilitation of the Arm (ERA): Development and unique features of a 3D end-effector robot.
    Milot MH, Hamel M, Provost PO, Bernier-Ouellet J, Dupuis M, Letourneau D, Briere S, Michaud F.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5833-5836. PubMed ID: 28269581
    [Abstract] [Full Text] [Related]

  • 4. A comparison of the effects and usability of two exoskeletal robots with and without robotic actuation for upper extremity rehabilitation among patients with stroke: a single-blinded randomised controlled pilot study.
    Park JH, Park G, Kim HY, Lee JY, Ham Y, Hwang D, Kwon S, Shin JH.
    J Neuroeng Rehabil; 2020 Oct 19; 17(1):137. PubMed ID: 33076952
    [Abstract] [Full Text] [Related]

  • 5. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects.
    Sheng B, Zhang Y, Meng W, Deng C, Xie S.
    Med Eng Phys; 2016 Jul 19; 38(7):587-606. PubMed ID: 27117423
    [Abstract] [Full Text] [Related]

  • 6. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities.
    Eiammanussakul T, Sangveraphunsiri V.
    J Healthc Eng; 2018 Jul 19; 2018():1927807. PubMed ID: 29808109
    [Abstract] [Full Text] [Related]

  • 7. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study.
    Washabaugh EP, Treadway E, Gillespie RB, Remy CD, Krishnan C.
    Restor Neurol Neurosci; 2018 Jul 19; 36(6):693-708. PubMed ID: 30400120
    [Abstract] [Full Text] [Related]

  • 8. Predictors of activities of daily living outcomes after upper limb robot-assisted therapy in subacute stroke patients.
    Franceschini M, Goffredo M, Pournajaf S, Paravati S, Agosti M, De Pisi F, Galafate D, Posteraro F.
    PLoS One; 2018 Jul 19; 13(2):e0193235. PubMed ID: 29466440
    [Abstract] [Full Text] [Related]

  • 9. System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery.
    Zhang K, Chen X, Liu F, Tang H, Wang J, Wen W.
    Behav Neurol; 2018 Jul 19; 2018():6737056. PubMed ID: 30651892
    [Abstract] [Full Text] [Related]

  • 10. Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation.
    Masiero S, Armani M, Ferlini G, Rosati G, Rossi A.
    Neurorehabil Neural Repair; 2014 May 19; 28(4):377-86. PubMed ID: 24316679
    [Abstract] [Full Text] [Related]

  • 11. Impact of smart force feedback rehabilitation robot training on upper limb motor function in the subacute stage of stroke.
    Xu Q, Li C, Pan Y, Li W, Jia T, Li Z, Ma D, Pang X, Ji L.
    NeuroRehabilitation; 2020 May 19; 47(2):209-215. PubMed ID: 32741790
    [Abstract] [Full Text] [Related]

  • 12. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective.
    Gassert R, Dietz V.
    J Neuroeng Rehabil; 2018 Jun 05; 15(1):46. PubMed ID: 29866106
    [Abstract] [Full Text] [Related]

  • 13. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG, He J, Koeneman EJ, Koeneman JB, Herman R, Huang H, Schultz RS, Herring DE, Wanberg J, Balasubramanian S, Swenson P, Ward JA.
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep 05; 15(3):336-46. PubMed ID: 17894266
    [Abstract] [Full Text] [Related]

  • 14. A study on the operation of rehabilitation interfaces in active rehabilitation exercises for upper limb hemiplegic patients: Interfaces for lateral and bilateral exercises.
    Eom SH, Lee EH.
    Technol Health Care; 2016 Apr 29; 24 Suppl 2():S607-23. PubMed ID: 27163324
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A, Blanco A, Badesa FJ, Barios JA, Zollo L, Garcia-Aracil N.
    J Neuroeng Rehabil; 2018 Feb 20; 15(1):10. PubMed ID: 29458397
    [Abstract] [Full Text] [Related]

  • 20. Portable robots for upper-limb rehabilitation after stroke: a systematic review and meta-analysis.
    Tseng KC, Wang L, Hsieh C, Wong AM.
    Ann Med; 2024 Dec 20; 56(1):2337735. PubMed ID: 38640459
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 58.