These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
435 related items for PubMed ID: 25604693
41. Transcriptome profiling reveals the effects of drought tolerance in Giant Juncao. Zhou J, Chen S, Shi W, David-Schwartz R, Li S, Yang F, Lin Z. BMC Plant Biol; 2021 Jan 04; 21(1):2. PubMed ID: 33390157 [Abstract] [Full Text] [Related]
42. Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C, Hu Z. BMC Genomics; 2016 Mar 08; 17():200. PubMed ID: 26951633 [Abstract] [Full Text] [Related]
43. Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH. BMC Genomics; 2019 Oct 24; 20(1):773. PubMed ID: 31651238 [Abstract] [Full Text] [Related]
44. De Novo Assembly and Discovery of Genes That Involved in Drought Tolerance in the Common Vetch. Zhu Y, Liu Q, Xu W, Zhang J, Wang X, Nie G, Yao L, Wang H, Lin C. Int J Mol Sci; 2019 Jan 15; 20(2):. PubMed ID: 30650531 [Abstract] [Full Text] [Related]
46. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Physiol Plant; 2021 Jun 15; 172(2):847-868. PubMed ID: 33180329 [Abstract] [Full Text] [Related]
47. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. Lane T, Best T, Zembower N, Davitt J, Henry N, Xu Y, Koch J, Liang H, McGraw J, Schuster S, Shim D, Coggeshall MV, Carlson JE, Staton ME. BMC Genomics; 2016 Sep 02; 17(1):702. PubMed ID: 27589953 [Abstract] [Full Text] [Related]
49. Independent and combined abiotic stresses affect the physiology and expression patterns of DREB genes differently in stress-susceptible and resistant genotypes of banana. Jangale BL, Chaudhari RS, Azeez A, Sane PV, Sane AP, Krishna B. Physiol Plant; 2019 Feb 02; 165(2):303-318. PubMed ID: 30216466 [Abstract] [Full Text] [Related]
50. Rootstock-induced molecular responses associated with drought tolerance in sweet orange as revealed by RNA-Seq. Gonçalves LP, Boscariol Camargo RL, Takita MA, Machado MA, Dos Soares Filho WS, Costa MGC. BMC Genomics; 2019 Feb 06; 20(1):110. PubMed ID: 30727949 [Abstract] [Full Text] [Related]
52. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Plant J; 2020 Dec 06; 104(5):1195-1214. PubMed ID: 32920943 [Abstract] [Full Text] [Related]
53. Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis). Saha G, Park JI, Ahmed NU, Kayum MA, Kang KK, Nou IS. Plant Physiol Biochem; 2016 Jul 06; 104():200-15. PubMed ID: 27038155 [Abstract] [Full Text] [Related]
54. Transcriptomic Analysis of Tea Plant Responding to Drought Stress and Recovery. Liu SC, Jin JQ, Ma JQ, Yao MZ, Ma CL, Li CF, Ding ZT, Chen L. PLoS One; 2016 Jul 06; 11(1):e0147306. PubMed ID: 26788738 [Abstract] [Full Text] [Related]
55. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. BMC Genomics; 2014 May 23; 15(1):396. PubMed ID: 24886001 [Abstract] [Full Text] [Related]
56. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Zhang X, Yang Z, Li Z, Zhang F, Hao L. Gene; 2019 Aug 20; 710():375-386. PubMed ID: 31200084 [Abstract] [Full Text] [Related]
57. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S. Sci Rep; 2016 Jul 27; 6():30446. PubMed ID: 27461139 [Abstract] [Full Text] [Related]
58. Transcriptome analysis of stem development in the tumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequencing. Sun Q, Zhou G, Cai Y, Fan Y, Zhu X, Liu Y, He X, Shen J, Jiang H, Hu D, Pan Z, Xiang L, He G, Dong D, Yang J. BMC Plant Biol; 2012 Apr 21; 12():53. PubMed ID: 22520079 [Abstract] [Full Text] [Related]
59. Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q. BMC Plant Biol; 2015 Jun 20; 15():152. PubMed ID: 26092253 [Abstract] [Full Text] [Related]
60. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa. Saha G, Park JI, Jung HJ, Ahmed NU, Kayum MA, Kang JG, Nou IS. Plant Physiol Biochem; 2015 Jul 20; 92():92-104. PubMed ID: 25931321 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]