These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


393 related items for PubMed ID: 25605134

  • 1. A small lytic polysaccharide monooxygenase from Streptomyces griseus targeting α- and β-chitin.
    Nakagawa YS, Kudo M, Loose JS, Ishikawa T, Totani K, Eijsink VG, Vaaje-Kolstad G.
    FEBS J; 2015 Mar; 282(6):1065-79. PubMed ID: 25605134
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from Streptomyces griseus Reveals Functional Variation.
    Nakagawa YS, Kudo M, Onodera R, Ang LZP, Watanabe T, Totani K, Eijsink VGH, Vaaje-Kolstad G.
    J Agric Food Chem; 2020 Nov 25; 68(47):13641-13650. PubMed ID: 33151668
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z, Nelson CE, Dalhus B, Mekasha S, Loose JS, Crouch LI, Røhr ÅK, Gardner JG, Eijsink VG, Vaaje-Kolstad G.
    J Biol Chem; 2016 Apr 01; 291(14):7300-12. PubMed ID: 26858252
    [Abstract] [Full Text] [Related]

  • 7. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases.
    Forsberg Z, Røhr AK, Mekasha S, Andersson KK, Eijsink VG, Vaaje-Kolstad G, Sørlie M.
    Biochemistry; 2014 Mar 18; 53(10):1647-56. PubMed ID: 24559135
    [Abstract] [Full Text] [Related]

  • 8. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase.
    Paspaliari DK, Loose JS, Larsen MH, Vaaje-Kolstad G.
    FEBS J; 2015 Mar 18; 282(5):921-36. PubMed ID: 25565565
    [Abstract] [Full Text] [Related]

  • 9. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.
    Nakagawa YS, Eijsink VG, Totani K, Vaaje-Kolstad G.
    J Agric Food Chem; 2013 Nov 20; 61(46):11061-6. PubMed ID: 24168426
    [Abstract] [Full Text] [Related]

  • 10. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs.
    Støpamo FG, Røhr ÅK, Mekasha S, Petrović DM, Várnai A, Eijsink VGH.
    J Biol Chem; 2021 Dec 20; 297(6):101421. PubMed ID: 34798071
    [Abstract] [Full Text] [Related]

  • 11. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.
    Hamre AG, Eide KB, Wold HH, Sørlie M.
    Carbohydr Res; 2015 Apr 30; 407():166-9. PubMed ID: 25812992
    [Abstract] [Full Text] [Related]

  • 12. Identification of the substrate interaction region of the chitin-binding domain of Streptomyces griseus chitinase C.
    Akagi K, Watanabe J, Hara M, Kezuka Y, Chikaishi E, Yamaguchi T, Akutsu H, Nonaka T, Watanabe T, Ikegami T.
    J Biochem; 2006 Mar 30; 139(3):483-93. PubMed ID: 16567413
    [Abstract] [Full Text] [Related]

  • 13. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere.
    Munzone A, El Kerdi B, Fanuel M, Rogniaux H, Ropartz D, Réglier M, Royant A, Simaan AJ, Decroos C.
    FEBS J; 2020 Aug 30; 287(15):3298-3314. PubMed ID: 31903721
    [Abstract] [Full Text] [Related]

  • 14. Characterization and synergistic action of a tetra-modular lytic polysaccharide monooxygenase from Bacillus cereus.
    Mutahir Z, Mekasha S, Loose JSM, Abbas F, Vaaje-Kolstad G, Eijsink VGH, Forsberg Z.
    FEBS Lett; 2018 Aug 30; 592(15):2562-2571. PubMed ID: 29993123
    [Abstract] [Full Text] [Related]

  • 15. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvitvang HF, Nærdal GK, Sletta H, Forsberg Z, Eijsink VGH.
    J Biol Chem; 2019 Dec 13; 294(50):19349-19364. PubMed ID: 31656228
    [Abstract] [Full Text] [Related]

  • 16. Bioconversion of α-Chitin by a Lytic Polysaccharide Monooxygenase OsLPMO10A Coupled with Chitinases and the Synergistic Mechanism Analysis.
    Zhao H, Su H, Sun J, Dong H, Mao X.
    J Agric Food Chem; 2024 Apr 03; 72(13):7256-7265. PubMed ID: 38438973
    [Abstract] [Full Text] [Related]

  • 17. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin.
    Mekasha S, Tuveng TR, Askarian F, Choudhary S, Schmidt-Dannert C, Niebisch A, Modregger J, Vaaje-Kolstad G, Eijsink VGH.
    J Biol Chem; 2020 Jul 03; 295(27):9134-9146. PubMed ID: 32398257
    [Abstract] [Full Text] [Related]

  • 18. Chitin Biodegradation by Lytic Polysaccharide Monooxygenases from Streptomyces coelicolor In Vitro and In Vivo.
    Li F, Zhao H, Liu Y, Zhang J, Yu H.
    Int J Mol Sci; 2022 Dec 23; 24(1):. PubMed ID: 36613716
    [Abstract] [Full Text] [Related]

  • 19. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases.
    Forsberg Z, Mackenzie AK, Sørlie M, Røhr ÅK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijsink VG.
    Proc Natl Acad Sci U S A; 2014 Jun 10; 111(23):8446-51. PubMed ID: 24912171
    [Abstract] [Full Text] [Related]

  • 20. Fast purification method of functional LPMOs from Streptomyces ambofaciens by affinity adsorption.
    Valenzuela SV, Ferreres G, Margalef G, Pastor FIJ.
    Carbohydr Res; 2017 Aug 07; 448():205-211. PubMed ID: 28366436
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 20.