These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 25605729
1. Structural and biochemical analysis of the essential diadenylate cyclase CdaA from Listeria monocytogenes. Rosenberg J, Dickmanns A, Neumann P, Gunka K, Arens J, Kaever V, Stülke J, Ficner R, Commichau FM. J Biol Chem; 2015 Mar 06; 290(10):6596-606. PubMed ID: 25605729 [Abstract] [Full Text] [Related]
2. Crystal structures of the c-di-AMP-synthesizing enzyme CdaA. Heidemann JL, Neumann P, Dickmanns A, Ficner R. J Biol Chem; 2019 Jul 05; 294(27):10463-10470. PubMed ID: 31118276 [Abstract] [Full Text] [Related]
3. Phenotypes Associated with the Essential Diadenylate Cyclase CdaA and Its Potential Regulator CdaR in the Human Pathogen Listeria monocytogenes. Rismondo J, Gibhardt J, Rosenberg J, Kaever V, Halbedel S, Commichau FM. J Bacteriol; 2016 Feb 01; 198(3):416-26. PubMed ID: 26527648 [Abstract] [Full Text] [Related]
4. A small step towards an important goal: fragment screen of the c-di-AMP-synthesizing enzyme CdaA. Neumann P, Heidemann JL, Wollenhaupt J, Dickmanns A, Agthe M, Weiss MS, Ficner R. Acta Crystallogr D Struct Biol; 2024 May 01; 80(Pt 5):350-361. PubMed ID: 38682668 [Abstract] [Full Text] [Related]
5. An Essential Poison: Synthesis and Degradation of Cyclic Di-AMP in Bacillus subtilis. Gundlach J, Mehne FM, Herzberg C, Kampf J, Valerius O, Kaever V, Stülke J. J Bacteriol; 2015 Oct 01; 197(20):3265-74. PubMed ID: 26240071 [Abstract] [Full Text] [Related]
6. Cyclic di-AMP homeostasis in bacillus subtilis: both lack and high level accumulation of the nucleotide are detrimental for cell growth. Mehne FM, Gunka K, Eilers H, Herzberg C, Kaever V, Stülke J. J Biol Chem; 2013 Jan 18; 288(3):2004-17. PubMed ID: 23192352 [Abstract] [Full Text] [Related]
7. Control of the diadenylate cyclase CdaS in Bacillus subtilis: an autoinhibitory domain limits cyclic di-AMP production. Mehne FM, Schröder-Tittmann K, Eijlander RT, Herzberg C, Hewitt L, Kaever V, Lewis RJ, Kuipers OP, Tittmann K, Stülke J. J Biol Chem; 2014 Jul 25; 289(30):21098-107. PubMed ID: 24939848 [Abstract] [Full Text] [Related]
8. Structural basis for the inhibition of the Bacillus subtilis c-di-AMP cyclase CdaA by the phosphoglucomutase GlmM. Pathania M, Tosi T, Millership C, Hoshiga F, Morgan RML, Freemont PS, Gründling A. J Biol Chem; 2021 Nov 25; 297(5):101317. PubMed ID: 34678313 [Abstract] [Full Text] [Related]
9. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT, Commichau FM. J Biol Chem; 2019 Nov 01; 294(44):16020-16033. PubMed ID: 31506295 [Abstract] [Full Text] [Related]
10. Replenishing the cyclic-di-AMP pool: regulation of diadenylate cyclase activity in bacteria. Pham TH, Liang ZX, Marcellin E, Turner MS. Curr Genet; 2016 Nov 01; 62(4):731-738. PubMed ID: 27074767 [Abstract] [Full Text] [Related]
11. An extracytoplasmic protein and a moonlighting enzyme modulate synthesis of c-di-AMP in Listeria monocytogenes. Gibhardt J, Heidemann JL, Bremenkamp R, Rosenberg J, Seifert R, Kaever V, Ficner R, Commichau FM. Environ Microbiol; 2020 Jul 01; 22(7):2771-2791. PubMed ID: 32250026 [Abstract] [Full Text] [Related]
12. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Witte G, Hartung S, Büttner K, Hopfner KP. Mol Cell; 2008 Apr 25; 30(2):167-78. PubMed ID: 18439896 [Abstract] [Full Text] [Related]
13. Cyclic-di-AMP synthesis by the diadenylate cyclase CdaA is modulated by the peptidoglycan biosynthesis enzyme GlmM in Lactococcus lactis. Zhu Y, Pham TH, Nhiep TH, Vu NM, Marcellin E, Chakrabortti A, Wang Y, Waanders J, Lo R, Huston WM, Bansal N, Nielsen LK, Liang ZX, Turner MS. Mol Microbiol; 2016 Mar 25; 99(6):1015-27. PubMed ID: 26585449 [Abstract] [Full Text] [Related]
14. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Wang M, Wamp S, Gibhardt J, Holland G, Schwedt I, Schmidtke KU, Scheibner K, Halbedel S, Commichau FM. Environ Microbiol; 2022 Sep 25; 24(9):4466-4488. PubMed ID: 35688634 [Abstract] [Full Text] [Related]
15. The Diadenylate Cyclase CdaA Is Critical for Borrelia turicatae Virulence and Physiology. Jackson-Litteken CD, Ratliff CT, Kneubehl AR, Siletti C, Pack L, Lan R, Huynh TN, Lopez JE, Blevins JS. Infect Immun; 2021 May 17; 89(6):. PubMed ID: 33846120 [Abstract] [Full Text] [Related]
16. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. Bai Y, Yang J, Zhou X, Ding X, Eisele LE, Bai G. PLoS One; 2012 May 17; 7(4):e35206. PubMed ID: 22529992 [Abstract] [Full Text] [Related]
18. Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection. Witte CE, Whiteley AT, Burke TP, Sauer JD, Portnoy DA, Woodward JJ. mBio; 2013 May 28; 4(3):e00282-13. PubMed ID: 23716572 [Abstract] [Full Text] [Related]
19. Structural analysis of the diadenylate cyclase reaction of DNA-integrity scanning protein A (DisA) and its inhibition by 3'-dATP. Müller M, Deimling T, Hopfner KP, Witte G. Biochem J; 2015 Aug 01; 469(3):367-74. PubMed ID: 26014055 [Abstract] [Full Text] [Related]
20. Highly efficient enzymatic preparation of c-di-AMP using the diadenylate cyclase DisA from Bacillus thuringiensis. Zheng C, Wang J, Luo Y, Fu Y, Su J, He J. Enzyme Microb Technol; 2013 May 10; 52(6-7):319-24. PubMed ID: 23608499 [Abstract] [Full Text] [Related] Page: [Next] [New Search]