These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


335 related items for PubMed ID: 2560768

  • 21. A GTP-protein activator of phosphodiesterase which forms in response to bleached rhodopsin.
    Uchida S, Wheeler GL, Yamazaki A, Bitensky MW.
    J Cyclic Nucleotide Res; 1981; 7(2):95-104. PubMed ID: 6278004
    [Abstract] [Full Text] [Related]

  • 22. Assay of phosphorylation of rhodopsin in vitro and in vivo.
    Kühn H, Wilden U.
    Methods Enzymol; 1982; 81():489-96. PubMed ID: 7047991
    [No Abstract] [Full Text] [Related]

  • 23. Transverse location of the retinal chromophore of rhodopsin in rod outer segment disc membranes.
    Thomas DD, Stryer L.
    J Mol Biol; 1982 Jan 05; 154(1):145-57. PubMed ID: 7077659
    [No Abstract] [Full Text] [Related]

  • 24. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin.
    Pfister C, Kühn H, Chabre M.
    Eur J Biochem; 1983 Nov 15; 136(3):489-99. PubMed ID: 6315431
    [Abstract] [Full Text] [Related]

  • 25. A light-stimulated increase of cyclic GMP in squid photoreceptors.
    Saibil HR.
    FEBS Lett; 1984 Mar 26; 168(2):213-6. PubMed ID: 6327365
    [Abstract] [Full Text] [Related]

  • 26. Modeling the rod outer segment birefringence change correlated with metarhodopsin II formation.
    Kaplan MW.
    Biophys J; 1982 Jun 26; 38(3):237-41. PubMed ID: 6980674
    [Abstract] [Full Text] [Related]

  • 27. [Specific binding of cGMP by the retinal rod axoneme and its modulation by calcium ions and calmodulin].
    Volotovskiĭ ID, Baranova LA, Khovratovich VI.
    Dokl Akad Nauk SSSR; 1990 Jun 26; 310(1):214-7. PubMed ID: 2159869
    [No Abstract] [Full Text] [Related]

  • 28. Light-induced dephosphorylation of two proteins in frog rod outer segments: influence of cyclic nucleotides and calcium.
    Polans AS, Hermolin J, Bownds MD.
    J Gen Physiol; 1979 Nov 26; 74(5):595-613. PubMed ID: 229195
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Low level developmental lead exposure decreases the sensitivity, amplitude and temporal resolution of rods.
    Fox DA, Katz LM, Farber DB.
    Neurotoxicology; 1991 Nov 26; 12(4):641-54. PubMed ID: 1665551
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Light-induced interaction between rhodopsin and GTP-binding protein leads to the hydrolysis of GTP in the rod outer segment.
    Gupta BD, Borys TJ, Deshpande S, Jones RE, Abrahamson EW.
    Biochem Cell Biol; 1986 Apr 26; 64(4):304-8. PubMed ID: 3087387
    [Abstract] [Full Text] [Related]

  • 36. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules.
    Aton BR.
    Biochemistry; 1986 Feb 11; 25(3):677-80. PubMed ID: 3955023
    [Abstract] [Full Text] [Related]

  • 37. Lateral diffusion of rhodopsin in photoreceptor cells measured by fluorescence photobleaching and recovery.
    Wey CL, Cone RA, Edidin MA.
    Biophys J; 1981 Feb 11; 33(2):225-32. PubMed ID: 6971659
    [Abstract] [Full Text] [Related]

  • 38. Phosphorylation at sites near rhodopsin's carboxyl-terminus regulates light initiated cGMP hydrolysis.
    Miller JL, Dratz EA.
    Vision Res; 1984 Feb 11; 24(11):1509-21. PubMed ID: 6099932
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.