These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


419 related items for PubMed ID: 25615226

  • 1. Phase-field-based lattice Boltzmann model for axisymmetric multiphase flows.
    Liang H, Chai ZH, Shi BC, Guo ZL, Zhang T.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063311. PubMed ID: 25615226
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Lattice Boltzmann model for axisymmetric multiphase flows.
    Premnath KN, Abraham J.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056706. PubMed ID: 16089690
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows.
    Liang H, Xu J, Chen J, Wang H, Chai Z, Shi B.
    Phys Rev E; 2018 Mar; 97(3-1):033309. PubMed ID: 29776082
    [Abstract] [Full Text] [Related]

  • 8. Modified lattice Boltzmann model for axisymmetric flows.
    Reis T, Phillips TN.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056703. PubMed ID: 17677194
    [Abstract] [Full Text] [Related]

  • 9. Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows.
    Guo Z, Han H, Shi B, Zheng C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046708. PubMed ID: 19518381
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
    Liu H, Valocchi AJ, Zhang Y, Kang Q.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013010. PubMed ID: 23410429
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X, Liang H, Chai Z, Shi B.
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Consistent lattice Boltzmann methods for incompressible axisymmetric flows.
    Zhang L, Yang S, Zeng Z, Yin L, Zhao Y, Chew JW.
    Phys Rev E; 2016 Aug; 94(2-1):023302. PubMed ID: 27627407
    [Abstract] [Full Text] [Related]

  • 19. Study of phase-field lattice Boltzmann models based on the conservative Allen-Cahn equation.
    Begmohammadi A, Haghani-Hassan-Abadi R, Fakhari A, Bolster D.
    Phys Rev E; 2020 Aug; 102(2-1):023305. PubMed ID: 32942360
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.