These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 25616114
1. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation. Wibisono Y, Yandi W, Golabi M, Nugraha R, Cornelissen ER, Kemperman AJ, Ederth T, Nijmeijer K. Water Res; 2015 Mar 15; 71():171-86. PubMed ID: 25616114 [Abstract] [Full Text] [Related]
2. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Siddiqui A, Farhat N, Bucs SS, Linares RV, Picioreanu C, Kruithof JC, van Loosdrecht MC, Kidwell J, Vrouwenvelder JS. Water Res; 2016 Mar 15; 91():55-67. PubMed ID: 26773488 [Abstract] [Full Text] [Related]
3. Impact of organic nutrient load on biomass accumulation, feed channel pressure drop increase and permeate flux decline in membrane systems. Bucs SS, Valladares Linares R, van Loosdrecht MC, Kruithof JC, Vrouwenvelder JS. Water Res; 2014 Dec 15; 67():227-42. PubMed ID: 25282091 [Abstract] [Full Text] [Related]
4. A novel scenario for biofouling control of spiral wound membrane systems. Vrouwenvelder JS, Van Loosdrecht MC, Kruithof JC. Water Res; 2011 Jul 15; 45(13):3890-8. PubMed ID: 21592541 [Abstract] [Full Text] [Related]
5. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change. Dreszer C, Wexler AD, Drusová S, Overdijk T, Zwijnenburg A, Flemming HC, Kruithof JC, Vrouwenvelder JS. Water Res; 2014 Dec 15; 67():243-54. PubMed ID: 25282092 [Abstract] [Full Text] [Related]
6. Impact of biofilm accumulation on transmembrane and feed channel pressure drop: effects of crossflow velocity, feed spacer and biodegradable nutrient. Dreszer C, Flemming HC, Zwijnenburg A, Kruithof JC, Vrouwenvelder JS. Water Res; 2014 Mar 01; 50():200-11. PubMed ID: 24374131 [Abstract] [Full Text] [Related]
7. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Siddiqui A, Lehmann S, Bucs SS, Fresquet M, Fel L, Prest EIEC, Ogier J, Schellenberg C, van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Water Res; 2017 Mar 01; 110():281-287. PubMed ID: 28027527 [Abstract] [Full Text] [Related]
8. Fouling resilient perforated feed spacers for membrane filtration. Kerdi S, Qamar A, Vrouwenvelder JS, Ghaffour N. Water Res; 2018 Sep 01; 140():211-219. PubMed ID: 29715645 [Abstract] [Full Text] [Related]
9. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Vrouwenvelder JS, Graf von der Schulenburg DA, Kruithof JC, Johns ML, van Loosdrecht MC. Water Res; 2009 Feb 01; 43(3):583-94. PubMed ID: 19058830 [Abstract] [Full Text] [Related]
10. Feasibility of supercritical CO₂ treatment for controlling biofouling in the reverse osmosis process. Mun S, Baek Y, Kim C, Lee YW, Yoon J. Biofouling; 2012 Feb 01; 28(6):627-33. PubMed ID: 22726211 [Abstract] [Full Text] [Related]
11. In-situ biofouling assessment in spacer filled channels using optical coherence tomography (OCT): 3D biofilm thickness mapping. Fortunato L, Leiknes T. Bioresour Technol; 2017 Apr 01; 229():231-235. PubMed ID: 28111031 [Abstract] [Full Text] [Related]
12. Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Ronen A, Semiat R, Dosoretz CG. Water Res; 2013 Nov 01; 47(17):6628-38. PubMed ID: 24079967 [Abstract] [Full Text] [Related]
13. Development of anti-biofouling feed spacers to improve performance of reverse osmosis modules. Rice D, Barrios AC, Xiao Z, Bogler A, Bar-Zeev E, Perreault F. Water Res; 2018 Nov 15; 145():599-607. PubMed ID: 30199804 [Abstract] [Full Text] [Related]
14. Impacts of non-uniform filament feed spacers characteristics on the hydraulic and anti-fouling performances in the spacer-filled membrane channels: Experiment and numerical simulation. Lin WC, Shao RP, Wang XM, Huang X. Water Res; 2020 Oct 15; 185():116251. PubMed ID: 32771564 [Abstract] [Full Text] [Related]
15. Roles and performance enhancement of feed spacer in spiral wound membrane modules for water treatment: A 20-year review on research evolvement. Lin W, Zhang Y, Li D, Wang XM, Huang X. Water Res; 2021 Jun 15; 198():117146. PubMed ID: 33945947 [Abstract] [Full Text] [Related]
16. Pressure drop increase by biofilm accumulation in spiral wound RO and NF membrane systems: role of substrate concentration, flow velocity, substrate load and flow direction. Vrouwenvelder JS, Hinrichs C, Van der Meer WG, Van Loosdrecht MC, Kruithof JC. Biofouling; 2009 Jun 15; 25(6):543-55. PubMed ID: 19437193 [Abstract] [Full Text] [Related]
17. Impact of flow regime on pressure drop increase and biomass accumulation and morphology in membrane systems. Vrouwenvelder JS, Buiter J, Riviere M, van der Meer WG, van Loosdrecht MC, Kruithof JC. Water Res; 2010 Feb 15; 44(3):689-702. PubMed ID: 19836048 [Abstract] [Full Text] [Related]
18. Fouling mitigation in reverse osmosis processes with 3D printed sinusoidal spacers. Koo JW, Ho JS, Tan YZ, Tan WS, An J, Zhang Y, Chua CK, Chong TH. Water Res; 2021 Dec 01; 207():117818. PubMed ID: 34749103 [Abstract] [Full Text] [Related]
19. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Bereschenko LA, Prummel H, Euverink GJ, Stams AJ, van Loosdrecht MC. Water Res; 2011 Jan 01; 45(2):405-16. PubMed ID: 21111441 [Abstract] [Full Text] [Related]
20. Bacteriophage-based strategies for biofouling control in ultrafiltration: In situ biofouling mitigation, biocidal additives and biofilm cleanser. Ma W, Panecka M, Tufenkji N, Rahaman MS. J Colloid Interface Sci; 2018 Aug 01; 523():254-265. PubMed ID: 29626763 [Abstract] [Full Text] [Related] Page: [Next] [New Search]