These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Martínez Ávila H, Schwarz S, Feldmann EM, Mantas A, von Bomhard A, Gatenholm P, Rotter N. Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945 [Abstract] [Full Text] [Related]
4. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. Nimeskern L, Martínez Ávila H, Sundberg J, Gatenholm P, Müller R, Stok KS. J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922 [Abstract] [Full Text] [Related]
6. Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, Kimura AM, Johnson MA, Vacanti JP, Randolph MA, Sundback CA. Tissue Eng Part A; 2014 Jan; 20(1-2):303-12. PubMed ID: 23980800 [Abstract] [Full Text] [Related]
7. Behavior of human chondrocytes in engineered porous bacterial cellulose scaffolds. Andersson J, Stenhamre H, Bäckdahl H, Gatenholm P. J Biomed Mater Res A; 2010 Sep 15; 94(4):1124-32. PubMed ID: 20694979 [Abstract] [Full Text] [Related]
8. Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. Feldmann EM, Sundberg JF, Bobbili B, Schwarz S, Gatenholm P, Rotter N. J Biomater Appl; 2013 Nov 15; 28(4):626-40. PubMed ID: 23413229 [Abstract] [Full Text] [Related]
10. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA. Tissue Eng Part A; 2016 Feb 15; 22(3-4):197-207. PubMed ID: 26529401 [Abstract] [Full Text] [Related]
11. 3D culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds. Innala M, Riebe I, Kuzmenko V, Sundberg J, Gatenholm P, Hanse E, Johannesson S. Artif Cells Nanomed Biotechnol; 2014 Oct 15; 42(5):302-8. PubMed ID: 23895194 [Abstract] [Full Text] [Related]
13. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Yang Q, Peng J, Guo Q, Huang J, Zhang L, Yao J, Yang F, Wang S, Xu W, Wang A, Lu S. Biomaterials; 2008 May 15; 29(15):2378-87. PubMed ID: 18313139 [Abstract] [Full Text] [Related]
16. A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Pretzel D, Linss S, Ahrem H, Endres M, Kaps C, Klemm D, Kinne RW. Arthritis Res Ther; 2013 May 15; 15(3):R59. PubMed ID: 23673274 [Abstract] [Full Text] [Related]
19. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering. Tang C, Xu Y, Jin C, Min BH, Li Z, Pei X, Wang L. Artif Organs; 2013 Dec 15; 37(12):E179-90. PubMed ID: 24251792 [Abstract] [Full Text] [Related]
20. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P. Biomaterials; 2005 Feb 15; 26(4):419-31. PubMed ID: 15275816 [Abstract] [Full Text] [Related] Page: [Next] [New Search]