These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The relationship between cyclic adenosine 3',5'-monophosphate and morphology in exponential phase Candida albicans. Cho T, Hamatake H, Kaminishi H, Hagihara Y, Watanabe K. J Med Vet Mycol; 1992; 30(1):35-42. PubMed ID: 1315387 [Abstract] [Full Text] [Related]
5. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation. Sullivan PA, Yin CY, Molloy C, Templeton MD, Shepherd MG. Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947 [Abstract] [Full Text] [Related]
6. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans. Pollack JH, Hashimoto T. Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098 [Abstract] [Full Text] [Related]
8. Reassessment of the effect of glucagon and nucleotides on Candida albicans germ tube formation. Zelada A, Castilla R, Passeron S, Cantore ML. Cell Mol Biol (Noisy-le-grand); 1996 Jun; 42(4):567-76. PubMed ID: 8828912 [Abstract] [Full Text] [Related]
9. Rapid differentiation of Candida albicans from other Candida species using its unique germ tube formation at 39 degrees C. Kim D, Shin WS, Lee KH, Kim K, Young Park J, Koh CM. Yeast; 2002 Aug; 19(11):957-62. PubMed ID: 12125052 [Abstract] [Full Text] [Related]
10. Nutritional factors determine germ tube formation in Candida albicans. Holmes AR, Shepherd MG. J Med Vet Mycol; 1988 Apr; 26(2):127-31. PubMed ID: 3047355 [Abstract] [Full Text] [Related]
11. Germ tube-forming cells of Candida albicans are more susceptible to clotrimazole-induced killing than yeast cells. Niimi M, Kamiyama A, Tokunaga M, Tokunaga J, Nakayama H. Sabouraudia; 1985 Feb; 23(1):63-8. PubMed ID: 3887603 [Abstract] [Full Text] [Related]
12. Nutritional stress proteins in Candida albicans. Dabrowa N, Zeuthen ML, Howard DH. J Gen Microbiol; 1990 Jul; 136(7):1387-91. PubMed ID: 2230722 [Abstract] [Full Text] [Related]
13. The role of glucose in the pH regulation of germ-tube formation in Candida albicans. Pollack JH, Hashimoto T. J Gen Microbiol; 1987 Feb; 133(2):415-24. PubMed ID: 3309155 [Abstract] [Full Text] [Related]
14. Magnesium and the regulation of germ-tube formation in Candida albicans. Walker GM, Sullivan PA, Shepherd MG. J Gen Microbiol; 1984 Aug; 130(8):1941-5. PubMed ID: 6432954 [Abstract] [Full Text] [Related]
15. Evaluation of Mueller-Hinton-agar as a simple medium for the germ tube production of Candida albicans and Candida dubliniensis. Rimek D, Fehse B, Göpel P. Mycoses; 2008 May; 51(3):205-8. PubMed ID: 18399901 [Abstract] [Full Text] [Related]
16. Growth of Candida albicans on artificial D-glucose derivatives. Hrmová M, Sturdík E, Kosík M, Gemeiner P, Petrus L. Z Allg Mikrobiol; 1983 May; 23(5):303-12. PubMed ID: 6353783 [Abstract] [Full Text] [Related]
17. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans. Gopal P, Sullivan PA, Shepherd MG. J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272 [Abstract] [Full Text] [Related]
18. Identification of Candida albicans with a commercially prepared germ-tube solution. Potter L, Papasian CJ. Clin Lab Sci; 1991 Oct; 4(2):121-2. PubMed ID: 10149414 [Abstract] [Full Text] [Related]
19. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response. Mattia E, Carruba G, Angiolella L, Cassone A. J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114 [Abstract] [Full Text] [Related]
20. Proline-induced germ-tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. Holmes AR, Shepherd MG. J Gen Microbiol; 1987 Nov; 133(11):3219-28. PubMed ID: 3328774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]