These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


328 related items for PubMed ID: 25623724

  • 1. Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress.
    Ma X, Xin Z, Wang Z, Yang Q, Guo S, Guo X, Cao L, Lin T.
    BMC Plant Biol; 2015 Jan 27; 15():21. PubMed ID: 25623724
    [Abstract] [Full Text] [Related]

  • 2. miRNA-based drought regulation in wheat.
    Akdogan G, Tufekci ED, Uranbey S, Unver T.
    Funct Integr Genomics; 2016 May 27; 16(3):221-33. PubMed ID: 26141043
    [Abstract] [Full Text] [Related]

  • 3. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes.
    Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L.
    J Proteomics; 2018 Feb 10; 172():122-142. PubMed ID: 28982538
    [Abstract] [Full Text] [Related]

  • 4. Genome-Wide Identification of MicroRNAs in Leaves and the Developing Head of Four Durum Genotypes during Water Deficit Stress.
    Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE, Able AJ, Able JA.
    PLoS One; 2015 Feb 10; 10(11):e0142799. PubMed ID: 26562166
    [Abstract] [Full Text] [Related]

  • 5. Comparative Temporal Expression Analysis of MicroRNAs and Their Target Genes in Contrasting Wheat Genotypes During Osmotic Stress.
    Kaur A, Gupta OP, Meena NL, Grewal A, Sharma P.
    Appl Biochem Biotechnol; 2017 Feb 10; 181(2):613-626. PubMed ID: 27663608
    [Abstract] [Full Text] [Related]

  • 6. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.).
    Yao Y, Guo G, Ni Z, Sunkar R, Du J, Zhu JK, Sun Q.
    Genome Biol; 2007 Feb 10; 8(6):R96. PubMed ID: 17543110
    [Abstract] [Full Text] [Related]

  • 7. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.
    Makhloufi E, Yousfi FE, Marande W, Mila I, Hanana M, Bergès H, Mzid R, Bouzayen M.
    J Exp Bot; 2014 Dec 10; 65(22):6359-71. PubMed ID: 25205575
    [Abstract] [Full Text] [Related]

  • 8. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance.
    Kumar J, Gunapati S, Kianian SF, Singh SP.
    Protoplasma; 2018 Sep 10; 255(5):1487-1504. PubMed ID: 29651660
    [Abstract] [Full Text] [Related]

  • 9. Root precursors of microRNAs in wild emmer and modern wheats show major differences in response to drought stress.
    Akpinar BA, Kantar M, Budak H.
    Funct Integr Genomics; 2015 Sep 10; 15(5):587-98. PubMed ID: 26174050
    [Abstract] [Full Text] [Related]

  • 10. The contrasting microRNA content of a drought tolerant and a drought susceptible wheat cultivar.
    Bakhshi B, Fard EM, Gharechahi J, Safarzadeh M, Nikpay N, Fotovat R, Azimi MR, Salekdeh GH.
    J Plant Physiol; 2017 Sep 10; 216():35-43. PubMed ID: 28575745
    [Abstract] [Full Text] [Related]

  • 11. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat.
    Liu H, Able AJ, Able JA.
    Int J Mol Sci; 2020 Aug 21; 21(17):. PubMed ID: 32825615
    [Abstract] [Full Text] [Related]

  • 12. Identification of miRNAs and their targets in wheat (Triticum aestivum L.) by EST analysis.
    Han J, Kong ML, Xie H, Sun QP, Nan ZJ, Zhang QZ, Pan JB.
    Genet Mol Res; 2013 Sep 19; 12(3):3793-805. PubMed ID: 24085441
    [Abstract] [Full Text] [Related]

  • 13. Identification of microRNAs and their corresponding targets involved in the susceptibility interaction of wheat response to Puccinia striiformis f. sp. tritici.
    Feng H, Wang T, Feng C, Zhang Q, Zhang X, Huang L, Wang X, Kang Z.
    Physiol Plant; 2016 May 19; 157(1):95-107. PubMed ID: 26563616
    [Abstract] [Full Text] [Related]

  • 14. Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes.
    Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD, Roberts PA, Close TJ, Zhu JK, Liu R.
    BMC Plant Biol; 2011 Sep 17; 11():127. PubMed ID: 21923928
    [Abstract] [Full Text] [Related]

  • 15. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat.
    Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z.
    Plant Biotechnol J; 2014 May 17; 12(4):468-79. PubMed ID: 24393105
    [Abstract] [Full Text] [Related]

  • 16. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress.
    Kantar M, Lucas SJ, Budak H.
    Planta; 2011 Mar 17; 233(3):471-84. PubMed ID: 21069383
    [Abstract] [Full Text] [Related]

  • 17. Identification and characterization of a subset of microRNAs in wheat (Triticum aestivum L.).
    Su C, Yang X, Gao S, Tang Y, Zhao C, Li L.
    Genomics; 2014 Apr 17; 103(4):298-307. PubMed ID: 24667243
    [Abstract] [Full Text] [Related]

  • 18. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array.
    Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q.
    BMC Genomics; 2008 Sep 22; 9():432. PubMed ID: 18808683
    [Abstract] [Full Text] [Related]

  • 19. Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.).
    Kumar RR, Pathak H, Sharma SK, Kala YK, Nirjal MK, Singh GP, Goswami S, Rai RD.
    Funct Integr Genomics; 2015 May 22; 15(3):323-48. PubMed ID: 25480755
    [Abstract] [Full Text] [Related]

  • 20. Dehydration stress-responsive miRNA in Brachypodium distachyon: evident by genome-wide screening of microRNAs expression.
    Budak H, Akpinar A.
    OMICS; 2011 Nov 22; 15(11):791-9. PubMed ID: 22122669
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.