These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


540 related items for PubMed ID: 25641578

  • 1. Nuclear localization domains of GATA activator Gln3 are required for transcription of target genes through dephosphorylation in Saccharomyces cerevisiae.
    Numamoto M, Tagami S, Ueda Y, Imabeppu Y, Sasano Y, Sugiyama M, Maekawa H, Harashima S.
    J Biosci Bioeng; 2015 Aug; 120(2):121-7. PubMed ID: 25641578
    [Abstract] [Full Text] [Related]

  • 2. More than One Way in: Three Gln3 Sequences Required To Relieve Negative Ure2 Regulation and Support Nuclear Gln3 Import in Saccharomyces cerevisiae.
    Tate JJ, Rai R, Cooper TG.
    Genetics; 2018 Jan; 208(1):207-227. PubMed ID: 29113979
    [Abstract] [Full Text] [Related]

  • 3. Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae.
    Cox KH, Kulkarni A, Tate JJ, Cooper TG.
    J Biol Chem; 2004 Mar 12; 279(11):10270-8. PubMed ID: 14679193
    [Abstract] [Full Text] [Related]

  • 4. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.
    Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG.
    Genetics; 2015 Nov 12; 201(3):989-1016. PubMed ID: 26333687
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.
    Tate JJ, Rai R, Cooper TG.
    Genetics; 2015 Feb 12; 199(2):455-74. PubMed ID: 25527290
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Cytoplasmic compartmentation of Gln3 during nitrogen catabolite repression and the mechanism of its nuclear localization during carbon starvation in Saccharomyces cerevisiae.
    Cox KH, Tate JJ, Cooper TG.
    J Biol Chem; 2002 Oct 04; 277(40):37559-66. PubMed ID: 12140287
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Nitrogen-responsive regulation of GATA protein family activators Gln3 and Gat1 occurs by two distinct pathways, one inhibited by rapamycin and the other by methionine sulfoximine.
    Georis I, Tate JJ, Cooper TG, Dubois E.
    J Biol Chem; 2011 Dec 30; 286(52):44897-912. PubMed ID: 22039046
    [Abstract] [Full Text] [Related]

  • 18. Differing responses of Gat1 and Gln3 phosphorylation and localization to rapamycin and methionine sulfoximine treatment in Saccharomyces cerevisiae.
    Kulkarni A, Buford TD, Rai R, Cooper TG.
    FEMS Yeast Res; 2006 Mar 30; 6(2):218-29. PubMed ID: 16487345
    [Abstract] [Full Text] [Related]

  • 19. Saccharomyces cerevisiae Sit4 phosphatase is active irrespective of the nitrogen source provided, and Gln3 phosphorylation levels become nitrogen source-responsive in a sit4-deleted strain.
    Tate JJ, Feller A, Dubois E, Cooper TG.
    J Biol Chem; 2006 Dec 08; 281(49):37980-92. PubMed ID: 17015442
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.