These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
181 related items for PubMed ID: 25644054
1. Low evolutionary potential for egg-to-adult viability in Drosophila melanogaster at high temperatures. Kristensen TN, Overgaard J, Lassen J, Hoffmann AA, Sgrò C. Evolution; 2015 Mar; 69(3):803-14. PubMed ID: 25644054 [Abstract] [Full Text] [Related]
2. Constant, cycling, hot and cold thermal environments: strong effects on mean viability but not on genetic estimates. Ketola T, Kellermann V, Kristensen TN, Loeschcke V. J Evol Biol; 2012 Jun; 25(6):1209-15. PubMed ID: 22515705 [Abstract] [Full Text] [Related]
3. A Drosophila laboratory evolution experiment points to low evolutionary potential under increased temperatures likely to be experienced in the future. Schou MF, Kristensen TN, Kellermann V, Schlötterer C, Loeschcke V. J Evol Biol; 2014 Sep; 27(9):1859-68. PubMed ID: 24925446 [Abstract] [Full Text] [Related]
4. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species. van Heerwaarden B, Malmberg M, Sgrò CM. Evolution; 2016 Feb; 70(2):456-64. PubMed ID: 26703976 [Abstract] [Full Text] [Related]
5. Egg Viability, Mating Frequency and Male Mating Ability Evolve in Populations of Drosophila melanogaster Selected for Resistance to Cold Shock. Singh K, Kochar E, Prasad NG. PLoS One; 2015 Feb; 10(6):e0129992. PubMed ID: 26065704 [Abstract] [Full Text] [Related]
6. Response to selection for rapid chill-coma recovery in Drosophila melanogaster: physiology and life-history traits. Anderson AR, Hoffmann AA, McKechnie SW. Genet Res; 2005 Feb; 85(1):15-22. PubMed ID: 16089033 [Abstract] [Full Text] [Related]
7. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Gilchrist GW, Huey RB, Partridge L. Physiol Zool; 1997 Feb; 70(4):403-14. PubMed ID: 9237300 [Abstract] [Full Text] [Related]
8. Physiological climatic limits in Drosophila: patterns and implications. Hoffmann AA. J Exp Biol; 2010 Mar 15; 213(6):870-80. PubMed ID: 20190112 [Abstract] [Full Text] [Related]
9. Stage-specific genotype-by-environment interactions for cold and heat hardiness in Drosophila melanogaster. Freda PJ, Ali ZM, Heter N, Ragland GJ, Morgan TJ. Heredity (Edinb); 2019 Oct 15; 123(4):479-491. PubMed ID: 31164731 [Abstract] [Full Text] [Related]
10. Evolutionary capacity of upper thermal limits: beyond single trait assessments. Blackburn S, van Heerwaarden B, Kellermann V, Sgrò CM. J Exp Biol; 2014 Jun 01; 217(Pt 11):1918-24. PubMed ID: 24625644 [Abstract] [Full Text] [Related]
11. Life history consequences of temperature transients in Drosophila melanogaster. Dillon ME, Cahn LR, Huey RB. J Exp Biol; 2007 Aug 01; 210(Pt 16):2897-904. PubMed ID: 17690238 [Abstract] [Full Text] [Related]
12. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. Bozinovic F, Medina NR, Alruiz JM, Cavieres G, Sabat P. J Comp Physiol B; 2016 Jul 01; 186(5):581-7. PubMed ID: 27003422 [Abstract] [Full Text] [Related]
13. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Kristensen TN, Loeschcke V, Hoffmann AA. Proc Biol Sci; 2007 Mar 22; 274(1611):771-8. PubMed ID: 17251092 [Abstract] [Full Text] [Related]
14. A multivariate test of evolutionary constraints for thermal tolerance in Drosophila melanogaster. Williams BR, VAN Heerwaarden B, Dowling DK, Sgrò CM. J Evol Biol; 2012 Jul 22; 25(7):1415-26. PubMed ID: 22587877 [Abstract] [Full Text] [Related]
15. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Gerken AR, Eller OC, Hahn DA, Morgan TJ. Proc Natl Acad Sci U S A; 2015 Apr 07; 112(14):4399-404. PubMed ID: 25805817 [Abstract] [Full Text] [Related]
16. Multivariate analysis of adaptive capacity for upper thermal limits in Drosophila simulans. van Heerwaarden B, Sgrò CM. J Evol Biol; 2013 Apr 07; 26(4):800-9. PubMed ID: 23517493 [Abstract] [Full Text] [Related]
18. Thermal adaptation in Drosophila serrata under conditions linked to its southern border: unexpected patterns from laboratory selection suggest limited evolutionary potential. Magiafoglou A, Hoffmann A. J Genet; 2003 Dec 07; 82(3):179-89. PubMed ID: 15133194 [Abstract] [Full Text] [Related]
19. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. Loeschcke V, Kristensen TN, Norry FM. J Insect Physiol; 2011 Sep 07; 57(9):1227-31. PubMed ID: 21708160 [Abstract] [Full Text] [Related]
20. Within-population plastic responses to combined thermal-nutritional stress differ from those in response to single stressors, and are genetically independent across traits in both males and females. Choy YMM, Walter GM, Mirth CK, Sgrò CM. J Evol Biol; 2024 Jun 28; 37(6):717-731. PubMed ID: 38757509 [Abstract] [Full Text] [Related] Page: [Next] [New Search]