These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


351 related items for PubMed ID: 25654929

  • 1. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA.
    Isenstein EM, Trescott A, Park MH.
    Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
    Cook KV, Beyer JE, Xiao X, Hambright KD.
    Water Res; 2023 Aug 15; 242():120076. PubMed ID: 37352675
    [Abstract] [Full Text] [Related]

  • 8. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements.
    Chaffin JD, Kane DD, Stanislawczyk K, Parker EM.
    Environ Sci Pollut Res Int; 2018 Sep 15; 25(25):25175-25189. PubMed ID: 29943249
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evaluating the portability of satellite derived chlorophyll-a algorithms for temperate inland lakes using airborne hyperspectral imagery and dense surface observations.
    Johansen R, Beck R, Nowosad J, Nietch C, Xu M, Shu S, Yang B, Liu H, Emery E, Reif M, Harwood J, Young J, Macke D, Martin M, Stillings G, Stumpf R, Su H.
    Harmful Algae; 2018 Jun 15; 76():35-46. PubMed ID: 29887203
    [Abstract] [Full Text] [Related]

  • 12. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea.
    Priyaja P, Dwivedi R, Sini S, Hatha M, Saravanane N, Sudhakar M.
    Environ Monit Assess; 2016 Dec 15; 188(12):662. PubMed ID: 27837363
    [Abstract] [Full Text] [Related]

  • 13. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T, Jia Y, Shum CK, Lee J.
    Harmful Algae; 2017 Jun 15; 66():13-19. PubMed ID: 28602249
    [Abstract] [Full Text] [Related]

  • 14. Satellite assessment of eutrophication hot spots and algal blooms in small and medium-sized productive reservoirs in Uruguay's main drinking water basin.
    Zabaleta B, Aubriot L, Olano H, Achkar M.
    Environ Sci Pollut Res Int; 2023 Mar 15; 30(15):43604-43618. PubMed ID: 36662428
    [Abstract] [Full Text] [Related]

  • 15. Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning.
    Gupta A, Hantush MM, Govindaraju RS.
    Sci Total Environ; 2023 Nov 20; 900():165781. PubMed ID: 37499836
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A new approach for the estimation of phytoplankton cell counts associated with algal blooms.
    Nazeer M, Wong MS, Nichol JE.
    Sci Total Environ; 2017 Jul 15; 590-591():125-138. PubMed ID: 28283297
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.
    Duan H, Tao M, Loiselle SA, Zhao W, Cao Z, Ma R, Tang X.
    Water Res; 2017 Oct 01; 122():455-470. PubMed ID: 28624729
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.