These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 2565794
1. Centrifugal decrement in diameter of myelinated afferent fibres innervating frog taste organ. Sato T, Ohkusa M, Miyamoto T, Okada Y. Comp Biochem Physiol A Comp Physiol; 1989; 92(3):435-40. PubMed ID: 2565794 [Abstract] [Full Text] [Related]
2. Incremental conduction velocity of single afferent fibers innervating frog taste organ. Sato T, Ohkusa M, Sugimoto K. Jpn J Physiol; 1980; 30(4):655-8. PubMed ID: 6970291 [Abstract] [Full Text] [Related]
4. The origin of slow potentials on the tongue surface induced by frog glossopharyngeal efferent fiber stimulation. Sato T, Toda K, Miyamoto T, Okada Y, Fujiyama R. Chem Senses; 2000 Oct; 25(5):583-9. PubMed ID: 11015330 [Abstract] [Full Text] [Related]
5. Parasympathetic postganglionic nerve fibers in the fungiform papillae of the bullfrog, Rana catesbeiana. Inoue K, Yamaai T, Kitada Y. Brain Res; 1992 Nov 20; 596(1-2):299-304. PubMed ID: 1467991 [Abstract] [Full Text] [Related]
6. Effect of antidromic stimulation of the glossopharyngeal nerve on afferent discharges occurring with and without sensory stimulation of the frog tongue. Murayama N, Ishiko N. Neurosci Lett; 1985 Sep 16; 60(1):95-9. PubMed ID: 3877259 [Abstract] [Full Text] [Related]
7. Membrane excitability of wing and rod cells in frog taste discs following denervation. Okuda-Akabane K, Fukami H, Narita K, Kitada Y. Brain Res; 2006 Aug 04; 1103(1):145-9. PubMed ID: 16787642 [Abstract] [Full Text] [Related]
8. Topographical difference in taste organ density and its sensitivity of frog tongue. Sato T, Ohkusa M, Okada Y, Sasaki M. Comp Biochem Physiol A Comp Physiol; 1983 Aug 04; 76(2):233-9. PubMed ID: 6139204 [Abstract] [Full Text] [Related]
9. On the origin and course of sympathetic nerve fibers in the fungiform papillae of the frog's tongue. Inoue K, Kitada Y. Okajimas Folia Anat Jpn; 1988 Oct 04; 65(4):171-5. PubMed ID: 3265492 [No Abstract] [Full Text] [Related]
10. Ultrastructural dimensions of myelinated peripheral nerve fibres in the cat and their relation to conduction velocity. Arbuthnott ER, Boyd IA, Kalu KU. J Physiol; 1980 Nov 04; 308():125-57. PubMed ID: 7230012 [Abstract] [Full Text] [Related]
11. Response properties of cerebellar neurons to stimulation of the frog glossopharyngeal nerve and tongue. Hanamori T, Ishiko N. Brain Res Bull; 1987 Apr 04; 18(4):491-9. PubMed ID: 3496939 [Abstract] [Full Text] [Related]
12. Organization of geniculate and trigeminal ganglion cells innervating single fungiform taste papillae: a study with tetramethylrhodamine dextran amine labeling. Whitehead MC, Ganchrow JR, Ganchrow D, Yao B. Neuroscience; 1999 Apr 04; 93(3):931-41. PubMed ID: 10473258 [Abstract] [Full Text] [Related]
13. Structure and physiological properties of the taste organs on the ventral side of frog tongue (Rana catesbeiana). Honda E, Toyoshima K, Hirakawa T, Nakamura S, Nakahara S. Chem Senses; 1994 Jun 04; 19(3):231-8. PubMed ID: 8055273 [Abstract] [Full Text] [Related]
14. Early development and innervation of taste bud-bearing papillae on the rat tongue. Farbman AI, Mbiene JP. J Comp Neurol; 1991 Feb 08; 304(2):172-86. PubMed ID: 2016415 [Abstract] [Full Text] [Related]
15. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury. Schalow G. Electromyogr Clin Neurophysiol; 2009 Feb 08; 49(6-7):263-86. PubMed ID: 19845099 [Abstract] [Full Text] [Related]
16. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb. Boyd IA, Kalu KU. J Physiol; 1979 Apr 08; 289():277-97. PubMed ID: 458657 [Abstract] [Full Text] [Related]
17. Non-synaptic transformation of gustatory receptor potential by stimulation of the parasympathetic fiber of the frog glossopharyngeal nerve. Sato T, Miyamoto T, Okada Y, Fujiyama R. Chem Senses; 2001 Jan 08; 26(1):79-84. PubMed ID: 11124218 [Abstract] [Full Text] [Related]
18. Receptive fields and gustatory responsiveness of frog glossopharyngeal nerve. A single fiber analysis. Hanamori T, Hirota K, Ishiko N. J Gen Physiol; 1990 Jun 08; 95(6):1159-82. PubMed ID: 2374001 [Abstract] [Full Text] [Related]