These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


303 related items for PubMed ID: 25662484

  • 1. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron.
    Nakatsuji Y, Salehi Z, Kawase Y.
    J Environ Manage; 2015 Apr 01; 152():183-91. PubMed ID: 25662484
    [Abstract] [Full Text] [Related]

  • 2. Removal of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) from wastewaters by zero-valent iron (ZVI): predominant removal mechanism for effective SDBS removal.
    Takayanagi A, Kobayashi M, Kawase Y.
    Environ Sci Pollut Res Int; 2017 Mar 01; 24(9):8087-8097. PubMed ID: 28138885
    [Abstract] [Full Text] [Related]

  • 3. Removal of cationic dye methylene blue by zero-valent iron: Effects of pH and dissolved oxygen on removal mechanisms.
    Sun X, Kurokawa T, Suzuki M, Takagi M, Kawase Y.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015 Mar 01; 50(10):1057-71. PubMed ID: 26121021
    [Abstract] [Full Text] [Related]

  • 4. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.
    Tomizawa M, Kurosu S, Kobayashi M, Kawase Y.
    J Environ Manage; 2016 Dec 01; 183(Pt 3):478-487. PubMed ID: 27623374
    [Abstract] [Full Text] [Related]

  • 5. Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI).
    Lai B, Chen Z, Zhou Y, Yang P, Wang J, Chen Z.
    J Hazard Mater; 2013 Apr 15; 250-251():220-8. PubMed ID: 23454461
    [Abstract] [Full Text] [Related]

  • 6. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution.
    Ji Q, Li J, Xiong Z, Lai B.
    Chemosphere; 2017 Apr 15; 172():10-20. PubMed ID: 28061341
    [Abstract] [Full Text] [Related]

  • 7. Removal of pharmaceutically active compounds (PhACs) by zero-valent iron: quantification of removal mechanisms consisting of degradation, adsorption and co-precipitation.
    Ohta N, Kobayashi M, Kawase Y.
    Environ Sci Pollut Res Int; 2023 Mar 15; 30(13):38819-38831. PubMed ID: 36586022
    [Abstract] [Full Text] [Related]

  • 8. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation.
    Shimizu A, Tokumura M, Nakajima K, Kawase Y.
    J Hazard Mater; 2012 Jan 30; 201-202():60-7. PubMed ID: 22119308
    [Abstract] [Full Text] [Related]

  • 9. Removal of antibiotic sulfamethoxazole by zero-valent iron under oxic and anoxic conditions: Removal mechanisms in acidic, neutral and alkaline solutions.
    Kobayashi M, Kurosu S, Yamaguchi R, Kawase Y.
    J Environ Manage; 2017 Sep 15; 200():88-96. PubMed ID: 28570939
    [Abstract] [Full Text] [Related]

  • 10. Linkage of iron elution and dissolved oxygen consumption with removal of organic pollutants by nanoscale zero-valent iron: Effects of pH on iron dissolution and formation of iron oxide/hydroxide layer.
    Fujioka N, Suzuki M, Kurosu S, Kawase Y.
    Chemosphere; 2016 Feb 15; 144():1738-46. PubMed ID: 26519806
    [Abstract] [Full Text] [Related]

  • 11. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.
    Klas S, Kirk DW.
    J Hazard Mater; 2013 May 15; 252-253():77-82. PubMed ID: 23500792
    [Abstract] [Full Text] [Related]

  • 12. Removal of arsenic from water by zero-valent iron.
    Bang S, Korfiatis GP, Meng X.
    J Hazard Mater; 2005 May 20; 121(1-3):61-7. PubMed ID: 15885407
    [Abstract] [Full Text] [Related]

  • 13. Biological treatment of non-biodegradable azo-dye enhanced by zero-valent iron (ZVI) pre-treatment.
    Suzuki M, Suzuki Y, Uzuka K, Kawase Y.
    Chemosphere; 2020 Nov 20; 259():127470. PubMed ID: 32603967
    [Abstract] [Full Text] [Related]

  • 14. A phenomenological reaction kinetic model for Cu removal from aqueous solutions by zero-valent iron (ZVI).
    Yoshino H, Kurosu S, Yamaguchi R, Kawase Y.
    Chemosphere; 2018 Jun 20; 200():542-553. PubMed ID: 29501891
    [Abstract] [Full Text] [Related]

  • 15. Degradation of p-nitrophenol in a BES-Fenton system based on limonite.
    Tao HC, Wei XY, Zhang LJ, Lei T, Xu N.
    J Hazard Mater; 2013 Jun 15; 254-255():236-241. PubMed ID: 23611804
    [Abstract] [Full Text] [Related]

  • 16. Kinetic study for phenol degradation by ZVI-assisted Fenton reaction and related iron corrosion investigated by X-ray absorption spectroscopy.
    Yoon IH, Yoo G, Hong HJ, Kim J, Kim MG, Choi WK, Yang JW.
    Chemosphere; 2016 Feb 15; 145():409-15. PubMed ID: 26692518
    [Abstract] [Full Text] [Related]

  • 17. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.
    Li F, Bao J, Zhang TC, Lei Y.
    Environ Technol; 2015 Feb 15; 36(24):3103-11. PubMed ID: 26006292
    [Abstract] [Full Text] [Related]

  • 18. Treatment of p-nitrophenol in an adsorbent-supplemented sequencing batch reactor.
    Loo YM, Lim PE, Seng CE.
    Environ Technol; 2010 Apr 14; 31(5):479-87. PubMed ID: 20480823
    [Abstract] [Full Text] [Related]

  • 19. Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction.
    Babaei AA, Azari A, Kalantary RR, Kakavandi B.
    Water Sci Technol; 2015 Apr 14; 72(11):1988-99. PubMed ID: 26606093
    [Abstract] [Full Text] [Related]

  • 20. Kinetics and mechanisms of pH-dependent selenite removal by zero valent iron.
    Liang L, Yang W, Guan X, Li J, Xu Z, Wu J, Huang Y, Zhang X.
    Water Res; 2013 Oct 01; 47(15):5846-55. PubMed ID: 23899877
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.